Ultra-broadband multi-character logic gates integrated by inverse designed logic units

IF 2.2 3区 物理与天体物理 Q2 OPTICS
Meitong Dong , Huiqin Wang , Haoji Yang , Nanrun Zhou , Cuicui Lu , Heqing Xu , Zijing Zhang
{"title":"Ultra-broadband multi-character logic gates integrated by inverse designed logic units","authors":"Meitong Dong ,&nbsp;Huiqin Wang ,&nbsp;Haoji Yang ,&nbsp;Nanrun Zhou ,&nbsp;Cuicui Lu ,&nbsp;Heqing Xu ,&nbsp;Zijing Zhang","doi":"10.1016/j.optcom.2025.131545","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a method to design multi-character logic gates, where the method of moving asymptotes (MMA) is used to design logic device unit structures, and then multi-character logic gates are constructed by integrating these basic logic units. With this approach, we successfully designed three-character AND and OR gates with dimensions of 2 μm × 3 μm, as well as four-character AND and OR gates with dimensions of 2 μm × 4 μm. The results show that the maximal contrast ratio of the three-character AND gate is 19.411 at wavelengths from 950 nm to 1600 nm, and the three-character OR gate achieves a maximal contrast ratio of 12.551 at wavelengths from 1200 nm to 1600 nm. For the four-character AND gate, the maximal contrast ratio is 9.269 at wavelengths from 950 nm to 1550 nm, while the four-character OR gate reaches a maximal contrast ratio of 17.754 at wavelengths from 1000 nm to 1600 nm. Compared to traditional binary logic gates, our multi-character logic gates achieve logical states directly without needing control ports, reducing design complexity and enhancing performance. These innovative logic gates have broad application prospects in future digital system designs.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"579 ","pages":"Article 131545"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825000732","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a method to design multi-character logic gates, where the method of moving asymptotes (MMA) is used to design logic device unit structures, and then multi-character logic gates are constructed by integrating these basic logic units. With this approach, we successfully designed three-character AND and OR gates with dimensions of 2 μm × 3 μm, as well as four-character AND and OR gates with dimensions of 2 μm × 4 μm. The results show that the maximal contrast ratio of the three-character AND gate is 19.411 at wavelengths from 950 nm to 1600 nm, and the three-character OR gate achieves a maximal contrast ratio of 12.551 at wavelengths from 1200 nm to 1600 nm. For the four-character AND gate, the maximal contrast ratio is 9.269 at wavelengths from 950 nm to 1550 nm, while the four-character OR gate reaches a maximal contrast ratio of 17.754 at wavelengths from 1000 nm to 1600 nm. Compared to traditional binary logic gates, our multi-character logic gates achieve logical states directly without needing control ports, reducing design complexity and enhancing performance. These innovative logic gates have broad application prospects in future digital system designs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信