Exploring coupling effects of rainfall and surface roughness on the sheet flow velocity

IF 7.3 1区 农林科学 Q1 ENVIRONMENTAL SCIENCES
Enshuai Shen , Gang Liu , Qiong Zhang , Chenxi Dan , Chang Liu , Hairu Li , Ya Liu , Xueming Qu , Xiaolin Xia , Dandan Liu , Zhen Guo , Xining Zhao
{"title":"Exploring coupling effects of rainfall and surface roughness on the sheet flow velocity","authors":"Enshuai Shen ,&nbsp;Gang Liu ,&nbsp;Qiong Zhang ,&nbsp;Chenxi Dan ,&nbsp;Chang Liu ,&nbsp;Hairu Li ,&nbsp;Ya Liu ,&nbsp;Xueming Qu ,&nbsp;Xiaolin Xia ,&nbsp;Dandan Liu ,&nbsp;Zhen Guo ,&nbsp;Xining Zhao","doi":"10.1016/j.iswcr.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately describing the path of sheet flow (SF) is crucial in soil erosion. Raindrop impact and underlying surface conditions can affect the SF velocity by changing the velocity profile. However, since this information is rarely known, the estimation of SF velocity is inaccurate. A series of upstream inflow and rainfall experiments were carried out on an impermeable flume to determine the coupling effects of rainfall and rough bed surfaces on the SF velocity and correction factor (<em>α</em>). The results showed that the roughness of the bed surface had a more pronounced effect on reducing the mean velocity compared to the surface velocity in both cases with and without raindrop impact. The raindrop impact notably reduced the flow velocity near the water surface, while the mean velocity slightly decreased or remained almost constant with increasing rainfall intensity. The reduction in SF velocity can be explained by the combined effects of the roughness reducing the mean velocity (up to 33.52%) and the raindrop impact reducing the surface velocity (up to 25.43%). In addition, <em>α</em> was not a constant when the SF was subjected to raindrop impact. The rainfall was found to increase <em>α</em>, while the roughness of the bed surface reduced <em>α</em> for all cases. Finally, a model was created to forecast <em>α</em> based on the ratio of water depth to roughness height, hydraulic slope, and rain Reynolds number. The results are valuable in soil erosion by providing accurate <em>α</em> for estimating the surface and mean velocities of SF.</div></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"13 1","pages":"Pages 164-176"},"PeriodicalIF":7.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633924000662","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately describing the path of sheet flow (SF) is crucial in soil erosion. Raindrop impact and underlying surface conditions can affect the SF velocity by changing the velocity profile. However, since this information is rarely known, the estimation of SF velocity is inaccurate. A series of upstream inflow and rainfall experiments were carried out on an impermeable flume to determine the coupling effects of rainfall and rough bed surfaces on the SF velocity and correction factor (α). The results showed that the roughness of the bed surface had a more pronounced effect on reducing the mean velocity compared to the surface velocity in both cases with and without raindrop impact. The raindrop impact notably reduced the flow velocity near the water surface, while the mean velocity slightly decreased or remained almost constant with increasing rainfall intensity. The reduction in SF velocity can be explained by the combined effects of the roughness reducing the mean velocity (up to 33.52%) and the raindrop impact reducing the surface velocity (up to 25.43%). In addition, α was not a constant when the SF was subjected to raindrop impact. The rainfall was found to increase α, while the roughness of the bed surface reduced α for all cases. Finally, a model was created to forecast α based on the ratio of water depth to roughness height, hydraulic slope, and rain Reynolds number. The results are valuable in soil erosion by providing accurate α for estimating the surface and mean velocities of SF.
探讨降雨和表面粗糙度对片流速度的耦合效应
准确描述板流路径是土壤侵蚀研究的关键。雨滴撞击和下垫面条件可以通过改变速度剖面来影响顺流速度。然而,由于这些信息很少为人所知,所以对顺流速度的估计是不准确的。在不透水水槽上进行了一系列的上游入流和降雨试验,以确定降雨和粗糙床面对SF速度和修正因子(α)的耦合效应。结果表明,在有雨滴和没有雨滴的情况下,床面粗糙度对平均速度的影响比表面速度的影响更明显。雨滴冲击显著降低了近水面流速,而平均流速随降雨强度的增加略有下降或基本保持不变。表面粗糙度降低了平均速度(33.52%),雨滴冲击降低了表面速度(25.43%)。此外,当SF受到雨滴撞击时,α不是恒定的。降雨增加了α,而床面粗糙度降低了α。最后,建立了一个基于水深与粗糙度高度之比、水力坡度和雨雷诺数的α预测模型。该结果为土壤侵蚀研究提供了精确的表面流速和平均流速的α值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Soil and Water Conservation Research
International Soil and Water Conservation Research Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
12.00
自引率
3.10%
发文量
171
审稿时长
49 days
期刊介绍: The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation. The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards. Examples of appropriate topical areas include (but are not limited to): • Conservation models, tools, and technologies • Conservation agricultural • Soil health resources, indicators, assessment, and management • Land degradation • Sustainable development • Soil erosion and its control • Soil erosion processes • Water resources assessment and management • Watershed management • Soil erosion models • Literature review on topics related soil and water conservation research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信