Hongyuan Zhang , Zijian Zhao , Chong Liu , Miao Duan , Zhiguo Lu , Hong Wang
{"title":"Classification of motor imagery EEG signals using wavelet scattering transform and Bi-directional long short-term memory networks","authors":"Hongyuan Zhang , Zijian Zhao , Chong Liu , Miao Duan , Zhiguo Lu , Hong Wang","doi":"10.1016/j.bbe.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>A brain-computer interface (BCI) is a technology that creates a communication path between the brain and external devices. Raw EEG data in BCI contain a large amount of complex information, but only some of it needs to be focused on in research. So Feature extraction and classification play an important role in BCI by reducing the data dimensionality and improving the accuracy of subsequent classification. Wavelet scattering transform is an emerging feature extraction method that generates time-shift invariant representations of EEG signals. We applied the wavelet scattering transform to extract features from motor imagery EEG signals, and utilized these features for classification purposes. To achieve this, we proposed a new method that combines wavelet scattering transform with a bidirectional long short-term memory (BiLSTM) network in a fusion deep learning network. Wavelet scattering transform can deeply mine the feature information in EEG signals. In the classification stage, multiple time window features obtained in the scattering transform are sent to the BiLSTM network for classification. The final result will be determined by a vote. In addition, for the processing of raw EEG data, we proposed a time-step based time window strategy that can better utilize the small dataset. This operation can obtain EEG data of multiple time steps. The proposed method was validated using BCI competition II dataset III and BCI competition IV dataset 2b. The results show that the proposed method in this paper can effectively improve the accuracy of motor imagery EEG and provide a new idea for the feature extraction and classification research of motor imagery brain-computer interface.</div></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 4","pages":"Pages 874-884"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S020852162400086X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A brain-computer interface (BCI) is a technology that creates a communication path between the brain and external devices. Raw EEG data in BCI contain a large amount of complex information, but only some of it needs to be focused on in research. So Feature extraction and classification play an important role in BCI by reducing the data dimensionality and improving the accuracy of subsequent classification. Wavelet scattering transform is an emerging feature extraction method that generates time-shift invariant representations of EEG signals. We applied the wavelet scattering transform to extract features from motor imagery EEG signals, and utilized these features for classification purposes. To achieve this, we proposed a new method that combines wavelet scattering transform with a bidirectional long short-term memory (BiLSTM) network in a fusion deep learning network. Wavelet scattering transform can deeply mine the feature information in EEG signals. In the classification stage, multiple time window features obtained in the scattering transform are sent to the BiLSTM network for classification. The final result will be determined by a vote. In addition, for the processing of raw EEG data, we proposed a time-step based time window strategy that can better utilize the small dataset. This operation can obtain EEG data of multiple time steps. The proposed method was validated using BCI competition II dataset III and BCI competition IV dataset 2b. The results show that the proposed method in this paper can effectively improve the accuracy of motor imagery EEG and provide a new idea for the feature extraction and classification research of motor imagery brain-computer interface.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.