Elucidation of cement hydration mechanisms by time-lapse X-ray computed micro-tomography and direct validation of a continuous hydration model

IF 6.7 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Fuqiang Guo , Philip J. Withers , Zhenjun Yang , Fengchen An
{"title":"Elucidation of cement hydration mechanisms by time-lapse X-ray computed micro-tomography and direct validation of a continuous hydration model","authors":"Fuqiang Guo ,&nbsp;Philip J. Withers ,&nbsp;Zhenjun Yang ,&nbsp;Fengchen An","doi":"10.1016/j.jobe.2025.111951","DOIUrl":null,"url":null,"abstract":"<div><div>The hydration process and the associated microstructural evolution of cement paste are complicated and need accurate numerical models to elucidate their complex mechanisms. Most existing models rely on idealised initial microstructures and thus have not been directly and faithfully validated by experiments. Here, time-lapse X-ray computed micro-tomography (μXCT) was first used to follow the hydration process from 1 to 28 days in two Portland cement paste specimens with water-to-cement ratios of 0.4 and 0.6, respectively. The evolution of microstructure, porosity and hydration degree was tracked at 2.7 μm voxel resolution and statistically analysed for each specimen by processing 7 successive 3D μXCT scans. For each specimen, the day 1 μXCT image was then segmented and used as the initial image-based microstructure for our recently developed continuous hydration model to simulate the hydration process. The simulated evolution of microstructure, porosity and hydration degree was found in good agreement with the time-lapse μXCT data. This study represents the first-time direct experimental validation of a hydration model for cement paste, and demonstrates the powerful synergy between μXCT tests and image-based modelling in elucidating the full hydration process.</div></div>","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"102 ","pages":"Article 111951"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352710225001871","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The hydration process and the associated microstructural evolution of cement paste are complicated and need accurate numerical models to elucidate their complex mechanisms. Most existing models rely on idealised initial microstructures and thus have not been directly and faithfully validated by experiments. Here, time-lapse X-ray computed micro-tomography (μXCT) was first used to follow the hydration process from 1 to 28 days in two Portland cement paste specimens with water-to-cement ratios of 0.4 and 0.6, respectively. The evolution of microstructure, porosity and hydration degree was tracked at 2.7 μm voxel resolution and statistically analysed for each specimen by processing 7 successive 3D μXCT scans. For each specimen, the day 1 μXCT image was then segmented and used as the initial image-based microstructure for our recently developed continuous hydration model to simulate the hydration process. The simulated evolution of microstructure, porosity and hydration degree was found in good agreement with the time-lapse μXCT data. This study represents the first-time direct experimental validation of a hydration model for cement paste, and demonstrates the powerful synergy between μXCT tests and image-based modelling in elucidating the full hydration process.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of building engineering
Journal of building engineering Engineering-Civil and Structural Engineering
CiteScore
10.00
自引率
12.50%
发文量
1901
审稿时长
35 days
期刊介绍: The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信