Bio-based materials and customized energy supply as key drivers to ecodesign primary portable batteries

IF 10.9 1区 环境科学与生态学 Q1 ENVIRONMENTAL STUDIES
Joan Muñoz-Liesa , Marina Navarro-Segarra , Miquel Sierra-Montoya , Juan Pablo Esquivel , Laura Talens Peiró
{"title":"Bio-based materials and customized energy supply as key drivers to ecodesign primary portable batteries","authors":"Joan Muñoz-Liesa ,&nbsp;Marina Navarro-Segarra ,&nbsp;Miquel Sierra-Montoya ,&nbsp;Juan Pablo Esquivel ,&nbsp;Laura Talens Peiró","doi":"10.1016/j.spc.2024.12.011","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid proliferation of electronic devices underscores the critical role of portable batteries as a source of energy supply. Conventional primary batteries have standard formats with pre-defined energy capacity, rely on the use of non-renewable and scarce materials, and are hardly energy-tailored for efficient energy utilization during their use stage. This paper presents a two-stage ecodesign framework to develop and iteratively improve the environmental performance of primary portable batteries. In the first stage, a battery prototype used as a demonstrator is developed based on the battery functional requirements and material configurations. Once the prototype is defined, in the second stage its potential environmental improvements are first evaluated through a qualitative assessment life cycle criteria by experts, and second quantified through a life cycle assessment. The combination of both methods helps to progressively improve the battery environmental impacts. In this study, we applied this framework and developed two environmentally improved versions. Changes implemented in the first and second iterative versions of the battery reduced the environmental impacts by up to 76% and 92%, respectively, compared to the original battery prototype. These improvements were largely driven by addressing key environmental hotspots, such as the membrane in version 1 and the casing in version 2. When compared to conventional coin-cell batteries, the developed bio-based batteries demonstrate environmental impact reductions by up to 76%, depending on the battery functional requirements. Overall, this cutting-edge ecodesign framework establishes a robust framework for developing future biodegradable portable batteries to integrate into sustainable electronics.</div></div>","PeriodicalId":48619,"journal":{"name":"Sustainable Production and Consumption","volume":"54 ","pages":"Pages 202-214"},"PeriodicalIF":10.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Production and Consumption","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352550924003543","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid proliferation of electronic devices underscores the critical role of portable batteries as a source of energy supply. Conventional primary batteries have standard formats with pre-defined energy capacity, rely on the use of non-renewable and scarce materials, and are hardly energy-tailored for efficient energy utilization during their use stage. This paper presents a two-stage ecodesign framework to develop and iteratively improve the environmental performance of primary portable batteries. In the first stage, a battery prototype used as a demonstrator is developed based on the battery functional requirements and material configurations. Once the prototype is defined, in the second stage its potential environmental improvements are first evaluated through a qualitative assessment life cycle criteria by experts, and second quantified through a life cycle assessment. The combination of both methods helps to progressively improve the battery environmental impacts. In this study, we applied this framework and developed two environmentally improved versions. Changes implemented in the first and second iterative versions of the battery reduced the environmental impacts by up to 76% and 92%, respectively, compared to the original battery prototype. These improvements were largely driven by addressing key environmental hotspots, such as the membrane in version 1 and the casing in version 2. When compared to conventional coin-cell batteries, the developed bio-based batteries demonstrate environmental impact reductions by up to 76%, depending on the battery functional requirements. Overall, this cutting-edge ecodesign framework establishes a robust framework for developing future biodegradable portable batteries to integrate into sustainable electronics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Production and Consumption
Sustainable Production and Consumption Environmental Science-Environmental Engineering
CiteScore
17.40
自引率
7.40%
发文量
389
审稿时长
13 days
期刊介绍: Sustainable production and consumption refers to the production and utilization of goods and services in a way that benefits society, is economically viable, and has minimal environmental impact throughout its entire lifespan. Our journal is dedicated to publishing top-notch interdisciplinary research and practical studies in this emerging field. We take a distinctive approach by examining the interplay between technology, consumption patterns, and policy to identify sustainable solutions for both production and consumption systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信