Biomimetic design of UHMWPE bearing interfaces lubricated through boundary-fluid mixed mechanism for artificial joints

IF 6.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Dangsheng Xiong , Yuntong Liu , Yaling Deng
{"title":"Biomimetic design of UHMWPE bearing interfaces lubricated through boundary-fluid mixed mechanism for artificial joints","authors":"Dangsheng Xiong ,&nbsp;Yuntong Liu ,&nbsp;Yaling Deng","doi":"10.1016/j.triboint.2025.110535","DOIUrl":null,"url":null,"abstract":"<div><div>Natural articular cartilage, devoid of lymph and blood vessels, has limited self-repair capacity but can function for up to 70 years. Its remarkable longevity is attributed to its porous, water-containing structure and lubrication from brushlike polymers. In this study, simulating structure and lubrication mechanism of natural articular cartilage, a composite structure incorporating pores and brushlike polymers was constructed on bearing interface of UHMWPE artificial joint. The biomimetic bearing interface achieved a boundary-fluid mixed lubrication mechanism, demonstrating ultra-high wettability (0° contact angle) and low friction coefficient (0.03) comparable to that of natural articular cartilage, while also exhibiting a relatively long lifespan. This study presents a promising technology for fabricating super-lubricated bearing interfaces mimicking natural cartilage and elaborates a unique lubrication mechanism.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"204 ","pages":"Article 110535"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X25000301","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Natural articular cartilage, devoid of lymph and blood vessels, has limited self-repair capacity but can function for up to 70 years. Its remarkable longevity is attributed to its porous, water-containing structure and lubrication from brushlike polymers. In this study, simulating structure and lubrication mechanism of natural articular cartilage, a composite structure incorporating pores and brushlike polymers was constructed on bearing interface of UHMWPE artificial joint. The biomimetic bearing interface achieved a boundary-fluid mixed lubrication mechanism, demonstrating ultra-high wettability (0° contact angle) and low friction coefficient (0.03) comparable to that of natural articular cartilage, while also exhibiting a relatively long lifespan. This study presents a promising technology for fabricating super-lubricated bearing interfaces mimicking natural cartilage and elaborates a unique lubrication mechanism.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tribology International
Tribology International 工程技术-工程:机械
CiteScore
10.10
自引率
16.10%
发文量
627
审稿时长
35 days
期刊介绍: Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International. Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信