Acidic-thermal coupled degradation of tylosin by using magnetic sulfonated resins under microwave irradiation

IF 5.9 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Caitiao Fang , Wei Zhang , Chunmei Wang , Shiling Li , Xiaomin Dou , Jun Liu
{"title":"Acidic-thermal coupled degradation of tylosin by using magnetic sulfonated resins under microwave irradiation","authors":"Caitiao Fang ,&nbsp;Wei Zhang ,&nbsp;Chunmei Wang ,&nbsp;Shiling Li ,&nbsp;Xiaomin Dou ,&nbsp;Jun Liu","doi":"10.1016/j.jes.2024.10.036","DOIUrl":null,"url":null,"abstract":"<div><div>Acidic- and alkalic-hydrolyses are selective in breaking functional bonds and falling off pharmacological moieties of antibiotics in production wastewater in comparison with advanced oxidation processes. Elevating temperature can accelerate hydrolytic kinetics and improve efficiency. In this work, magnetic sulfonated polypropylene resin (Fe<sub>3</sub>O<sub>4</sub>@PS-S) composites were reported for acidic-thermal hydrolysis of tylosin by employing the acidic feature of sulfonic group, the dielectric effect of resin, and the magnetic-loss effect of magnetite under microwave irradiation. As observed, a rapid and complete mitigation 100 mg/L of tylosin was achieved within 15 min by the catalysts. Acidic cleavage of tylosin was fulfilled by sulfonic groups in the composites, and microwave thermal accelerated the hydrolysis reactions due to the dielectric and magnetic-loss effects. Differentiating the dielectric and magnetic-loss effects through electromagnetic analyses indicated that the latter contributed more in converting microwave energy to heat. The interactions under multiple operational conditions were quantitatively fitted using the Behnajady model and visually demonstrated, which indicated that a synergic effect of microwave thermal- and acidic-hydrolyses contributed to the efficient mitigation of tylosin. The transformation products were identified and the pathways were supposed. Cleaving deoxyaminosugars groups and destructing lactone structures led to reduced antibacterial potential and toxicity reduction. The acute toxicity of tylosin and transformation products to fish, daphnia, and green algae were all classified as non-toxic. This work suggested that this synergistic acid-thermal hydrolytic method is attractive and promising in pretreating tylosin production wastewater in field.</div></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"155 ","pages":"Pages 127-138"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224005321","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Acidic- and alkalic-hydrolyses are selective in breaking functional bonds and falling off pharmacological moieties of antibiotics in production wastewater in comparison with advanced oxidation processes. Elevating temperature can accelerate hydrolytic kinetics and improve efficiency. In this work, magnetic sulfonated polypropylene resin (Fe3O4@PS-S) composites were reported for acidic-thermal hydrolysis of tylosin by employing the acidic feature of sulfonic group, the dielectric effect of resin, and the magnetic-loss effect of magnetite under microwave irradiation. As observed, a rapid and complete mitigation 100 mg/L of tylosin was achieved within 15 min by the catalysts. Acidic cleavage of tylosin was fulfilled by sulfonic groups in the composites, and microwave thermal accelerated the hydrolysis reactions due to the dielectric and magnetic-loss effects. Differentiating the dielectric and magnetic-loss effects through electromagnetic analyses indicated that the latter contributed more in converting microwave energy to heat. The interactions under multiple operational conditions were quantitatively fitted using the Behnajady model and visually demonstrated, which indicated that a synergic effect of microwave thermal- and acidic-hydrolyses contributed to the efficient mitigation of tylosin. The transformation products were identified and the pathways were supposed. Cleaving deoxyaminosugars groups and destructing lactone structures led to reduced antibacterial potential and toxicity reduction. The acute toxicity of tylosin and transformation products to fish, daphnia, and green algae were all classified as non-toxic. This work suggested that this synergistic acid-thermal hydrolytic method is attractive and promising in pretreating tylosin production wastewater in field.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Sciences-china
Journal of Environmental Sciences-china 环境科学-环境科学
CiteScore
13.70
自引率
0.00%
发文量
6354
审稿时长
2.6 months
期刊介绍: The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.
文献相关原料
公司名称
产品信息
阿拉丁
potassium dihydrogen phosphate (KH2PO4)
阿拉丁
acetonitrile
阿拉丁
methanol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信