Gut dysbiosis exacerbates inflammatory liver injury induced by environmentally relevant concentrations of nanoplastics via the gut-liver axis

IF 5.9 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Sugan Xia , Chaoyue Yan , Guodong Cai , Qingyu Xu , Hui Zou , Jianhong Gu , Yan Yuan , Zongping Liu , Jianchun Bian
{"title":"Gut dysbiosis exacerbates inflammatory liver injury induced by environmentally relevant concentrations of nanoplastics via the gut-liver axis","authors":"Sugan Xia ,&nbsp;Chaoyue Yan ,&nbsp;Guodong Cai ,&nbsp;Qingyu Xu ,&nbsp;Hui Zou ,&nbsp;Jianhong Gu ,&nbsp;Yan Yuan ,&nbsp;Zongping Liu ,&nbsp;Jianchun Bian","doi":"10.1016/j.jes.2024.11.022","DOIUrl":null,"url":null,"abstract":"<div><div>As an emerging and potentially threatening pollutant, nanoplastics (NPs) have received considerable global attention. Due to their physical properties and diminutive size, NPs ingestion can more easily cross biological barriers and enter the human and animal body. Despite reports of hepatotoxicity associated with NPs, their impact and potential underlying mechanisms remain elusive. In this study, we investigated the impact of NPs at concentrations found in the environment on the gut flora, intestinal barrier function, liver pyroptosis, and inflammation in mice following 12 weeks of exposure. To further validate the involvement of gut flora in inflammatory liver damage caused by NPs, we utilized antibiotics to remove the intestinal flora and performed fecal microbiota transplantation. We confirmed that NPs exposure altered the gut microbiota composition, with a notable rise in the proportions of <em>Alloprevotella</em> and <em>Ileibacterium</em> while causing a decrease in the relative proportions of <em>Dubosiella</em>. This disruption also affected the gut barrier, increasing lipopolysaccharides in circulation and promoting liver pyroptosis. Importantly, mice receiving fecal transplants from NPs-treated mice showed intestinal barrier damage, liver pyroptosis, and inflammation. However, NPs effects on the intestinal barrier and liver pyroptosis were attenuated by antibiotics depletion of the commensal microbiota. In summary, our current research revealed that extended exposure to environmentally relevant concentrations of NPs resulted in inflammatory damage to the liver. Additionally, we have identified for the first time that imbalances in intestinal flora are crucial in liver pyroptosis induced by NPs.</div></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"155 ","pages":"Pages 250-266"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224005540","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As an emerging and potentially threatening pollutant, nanoplastics (NPs) have received considerable global attention. Due to their physical properties and diminutive size, NPs ingestion can more easily cross biological barriers and enter the human and animal body. Despite reports of hepatotoxicity associated with NPs, their impact and potential underlying mechanisms remain elusive. In this study, we investigated the impact of NPs at concentrations found in the environment on the gut flora, intestinal barrier function, liver pyroptosis, and inflammation in mice following 12 weeks of exposure. To further validate the involvement of gut flora in inflammatory liver damage caused by NPs, we utilized antibiotics to remove the intestinal flora and performed fecal microbiota transplantation. We confirmed that NPs exposure altered the gut microbiota composition, with a notable rise in the proportions of Alloprevotella and Ileibacterium while causing a decrease in the relative proportions of Dubosiella. This disruption also affected the gut barrier, increasing lipopolysaccharides in circulation and promoting liver pyroptosis. Importantly, mice receiving fecal transplants from NPs-treated mice showed intestinal barrier damage, liver pyroptosis, and inflammation. However, NPs effects on the intestinal barrier and liver pyroptosis were attenuated by antibiotics depletion of the commensal microbiota. In summary, our current research revealed that extended exposure to environmentally relevant concentrations of NPs resulted in inflammatory damage to the liver. Additionally, we have identified for the first time that imbalances in intestinal flora are crucial in liver pyroptosis induced by NPs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Sciences-china
Journal of Environmental Sciences-china 环境科学-环境科学
CiteScore
13.70
自引率
0.00%
发文量
6354
审稿时长
2.6 months
期刊介绍: The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信