Insight into ventilation air methane combustion of ultralow sub-nanometer palladium catalyst within the MFI zeolite

IF 5.9 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Xueli Zhang , Tao Zhu , Shuai Liu , Baisheng Nie , Bo Yuan , Yiwei Han
{"title":"Insight into ventilation air methane combustion of ultralow sub-nanometer palladium catalyst within the MFI zeolite","authors":"Xueli Zhang ,&nbsp;Tao Zhu ,&nbsp;Shuai Liu ,&nbsp;Baisheng Nie ,&nbsp;Bo Yuan ,&nbsp;Yiwei Han","doi":"10.1016/j.jes.2024.10.035","DOIUrl":null,"url":null,"abstract":"<div><div>Methane's complete catalytic oxidation process has been widely studied, but efficient catalytic oxidation of low-concentration methane (≤0.75 %) remains a crucial problem in the coal chemical industry. How to prevent the sintering deactivation of the active component in Pd-based catalysts and achieve efficient and stable operation of sub-nanometer catalysts remains challenging. Here, we utilize the interaction between amine ligands and Pd nanoparticles to stabilize and encapsulate the Pd particles within the pores of a molecular sieve carrier, effectively promoting the high dispersion of Pd particles. By leveraging the low acidity, high hydrophobicity, and high hydrothermal stability of the zeolite carrier, the Pd@S-1 catalyst exhibits excellent activity and stability in the catalytic oxidation of methane at low concentrations. Finally, density functional theory is employed to investigate the reaction mechanism of low-concentration methane during the catalytic process. Encapsulating the active metal component in zeolite to improve catalytic activity and stability provides a theoretical basis and direction for preparing complete oxidation catalysts for low-concentration methane.</div></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"155 ","pages":"Pages 1-12"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100107422400531X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Methane's complete catalytic oxidation process has been widely studied, but efficient catalytic oxidation of low-concentration methane (≤0.75 %) remains a crucial problem in the coal chemical industry. How to prevent the sintering deactivation of the active component in Pd-based catalysts and achieve efficient and stable operation of sub-nanometer catalysts remains challenging. Here, we utilize the interaction between amine ligands and Pd nanoparticles to stabilize and encapsulate the Pd particles within the pores of a molecular sieve carrier, effectively promoting the high dispersion of Pd particles. By leveraging the low acidity, high hydrophobicity, and high hydrothermal stability of the zeolite carrier, the Pd@S-1 catalyst exhibits excellent activity and stability in the catalytic oxidation of methane at low concentrations. Finally, density functional theory is employed to investigate the reaction mechanism of low-concentration methane during the catalytic process. Encapsulating the active metal component in zeolite to improve catalytic activity and stability provides a theoretical basis and direction for preparing complete oxidation catalysts for low-concentration methane.

Abstract Image

MFI沸石内超低亚纳米钯催化剂通风空气甲烷燃烧的研究
甲烷的全催化氧化过程已经得到了广泛的研究,但低浓度甲烷(≤0.75%)的高效催化氧化仍然是煤化工领域的关键问题。如何防止钯基催化剂中活性组分的烧结失活,实现亚纳米催化剂的高效稳定运行,是一个具有挑战性的课题。本研究利用胺类配体与钯纳米粒子的相互作用,将钯粒子稳定包裹在分子筛载体的孔隙中,有效促进了钯粒子的高分散。利用沸石载体的低酸性、高疏水性和高水热稳定性,Pd@S-1催化剂在低浓度甲烷催化氧化中表现出优异的活性和稳定性。最后,利用密度泛函理论研究了低浓度甲烷在催化过程中的反应机理。将活性金属组分包封在沸石中提高催化活性和稳定性,为制备低浓度甲烷完全氧化催化剂提供了理论依据和方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Sciences-china
Journal of Environmental Sciences-china 环境科学-环境科学
CiteScore
13.70
自引率
0.00%
发文量
6354
审稿时长
2.6 months
期刊介绍: The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信