{"title":"Cortisol detection using a Long Period Fiber Grating Immunosensor coated with Graphene Oxide","authors":"Simone Soares , Ambra Giannetti , Flavio Esposito , Lucia Sansone , Anubhav Srivastava , Stefania Campopiano , Michele Giordano , Margarida Facão , Nuno F. Santos , Agostino Iadicicco , Carlos Marques , Francesco Chiavaioli","doi":"10.1016/j.snr.2024.100279","DOIUrl":null,"url":null,"abstract":"<div><div>Recirculating Aquaculture Systems (RAS) have revolutionized the protein production sector in aquaculture, leading to significant growth and expansion of the industry. Despite the success of RAS in aquaculture, there are challenges related to stress in fish raised in these systems, which can impact their food intake, growth, and overall well-being. One of the major limitations in the aquaculture industry is the lack of smart sensors for real-time detection of stress hormones like cortisol, hindering our ability to understand and effectively manage the welfare of fish in these systems. In this work, a graphene oxide (GO) coated long period grating (LPG) was fabricated into a double-clad optical fiber (DCF) with W-shaped refractive index profile. The working point of the device was tuned to the mode transition region to enhance its sensitivity against outer medium changes. It was further integrated into a microfluidic system and the fiber surface was functionalized with specific anti-cortisol antibodies for the detection of cortisol. Finally, the performance of this immunosensor was evaluated for a cortisol concentration range of 0.01 ng/mL to 100 ng/mL, a wide working range of concentrations of relevant interest, achieving a limit of detection (LOD) of 0.06 ng/mL. Moreover, a selectivity test using testosterone and glucose as interfering substances was carried out.</div></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"9 ","pages":"Article 100279"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266605392400095X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recirculating Aquaculture Systems (RAS) have revolutionized the protein production sector in aquaculture, leading to significant growth and expansion of the industry. Despite the success of RAS in aquaculture, there are challenges related to stress in fish raised in these systems, which can impact their food intake, growth, and overall well-being. One of the major limitations in the aquaculture industry is the lack of smart sensors for real-time detection of stress hormones like cortisol, hindering our ability to understand and effectively manage the welfare of fish in these systems. In this work, a graphene oxide (GO) coated long period grating (LPG) was fabricated into a double-clad optical fiber (DCF) with W-shaped refractive index profile. The working point of the device was tuned to the mode transition region to enhance its sensitivity against outer medium changes. It was further integrated into a microfluidic system and the fiber surface was functionalized with specific anti-cortisol antibodies for the detection of cortisol. Finally, the performance of this immunosensor was evaluated for a cortisol concentration range of 0.01 ng/mL to 100 ng/mL, a wide working range of concentrations of relevant interest, achieving a limit of detection (LOD) of 0.06 ng/mL. Moreover, a selectivity test using testosterone and glucose as interfering substances was carried out.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.