{"title":"Resistive pulse sensing of pre-nucleation activities during single-entity lysozyme crystallization on single nanopipettes","authors":"Yusuff Balogun , Ruoyu Yang , Gangli Wang","doi":"10.1016/j.snr.2025.100281","DOIUrl":null,"url":null,"abstract":"<div><div>The formation of cluster aggregates in a (super)saturated solution prior to protein nucleation is crucial to overcoming the thermodynamic energy barrier which enables further growth of single crystals. This process is important for single crystal growth, separation and energy conversion among other important applications. For structural determination of biomacromolecules, neutron crystallography holds unique advantages in resolving hydrogen/proton over other structure determination techniques but faces technical obstacles in requiring large high-quality single crystals and preferentially hydrogen-deuterium exchanges. Herein, we explore protein nucleation in heavy water (D<sub>2</sub>O) via nanopore-based resistive pulse sensing, with lysozyme as prototype. By controlling localized supersaturation and phase transition at a nanopore through adjusting the potential waveform, a single protein crystal can be grown. Our focus is on understanding the translocation and/or transformation of protein aggregates through nanopores prior to the irreversible nucleation. As expected, higher protein concentrations tend to facilitate nucleation and growth of a single protein crystal with higher supersaturation, consistent with bulk experiments. At lower protein concentrations, individual current spikes are resolved as characteristic single-entity events in resistive pulse sensing. Those transient events are potential-dependent characterized by the peak amplitude, duration and area/charges. Statistical analysis reveals both translocation of protein oligomers and their transformation or further aggregation. This study represents the first step toward elucidating valuable insights into the dynamics of protein translocation and aggregation in heavy water and demonstrates the potential of using nanopores in the detection and characterization of dynamic phase transitions at single-event levels.</div></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"9 ","pages":"Article 100281"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053925000013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of cluster aggregates in a (super)saturated solution prior to protein nucleation is crucial to overcoming the thermodynamic energy barrier which enables further growth of single crystals. This process is important for single crystal growth, separation and energy conversion among other important applications. For structural determination of biomacromolecules, neutron crystallography holds unique advantages in resolving hydrogen/proton over other structure determination techniques but faces technical obstacles in requiring large high-quality single crystals and preferentially hydrogen-deuterium exchanges. Herein, we explore protein nucleation in heavy water (D2O) via nanopore-based resistive pulse sensing, with lysozyme as prototype. By controlling localized supersaturation and phase transition at a nanopore through adjusting the potential waveform, a single protein crystal can be grown. Our focus is on understanding the translocation and/or transformation of protein aggregates through nanopores prior to the irreversible nucleation. As expected, higher protein concentrations tend to facilitate nucleation and growth of a single protein crystal with higher supersaturation, consistent with bulk experiments. At lower protein concentrations, individual current spikes are resolved as characteristic single-entity events in resistive pulse sensing. Those transient events are potential-dependent characterized by the peak amplitude, duration and area/charges. Statistical analysis reveals both translocation of protein oligomers and their transformation or further aggregation. This study represents the first step toward elucidating valuable insights into the dynamics of protein translocation and aggregation in heavy water and demonstrates the potential of using nanopores in the detection and characterization of dynamic phase transitions at single-event levels.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.