Joint optimization trajectory and resource allocation for UAV-assisted semantic communications

IF 2 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiangyang Xu , Chunlong He , Xingquan Li , Jiaming Xu
{"title":"Joint optimization trajectory and resource allocation for UAV-assisted semantic communications","authors":"Xiangyang Xu ,&nbsp;Chunlong He ,&nbsp;Xingquan Li ,&nbsp;Jiaming Xu","doi":"10.1016/j.phycom.2024.102555","DOIUrl":null,"url":null,"abstract":"<div><div>Semantic communication can effectively save bandwidth, and enhance communication capabilities by transmitting semantic features. However, semantic communication has certain limitations, such as limited application scenarios and inflexible deployment. To this end, we investigate an unmanned aerial vehicle (UAV)-assisted semantic communication system in this paper. An UAV serves as a mobile base station to service users in designated area. Each user has different requirements for transmission delay and performance, and the UAV has a limited maximum flight time. We need to achieve the communication goals of all users in the shortest possible time, that is, to ensure that the information received by each user meets latency and quality requirements. This is a non-convex optimization problem, which is very complicated to solve using traditional methods. In order to solve this problem, we propose a deep reinforcement learning algorithm based on Proximal Policy Optimization 2. The simulation results confirm the effectiveness of our proposed algorithm.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"68 ","pages":"Article 102555"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490724002738","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Semantic communication can effectively save bandwidth, and enhance communication capabilities by transmitting semantic features. However, semantic communication has certain limitations, such as limited application scenarios and inflexible deployment. To this end, we investigate an unmanned aerial vehicle (UAV)-assisted semantic communication system in this paper. An UAV serves as a mobile base station to service users in designated area. Each user has different requirements for transmission delay and performance, and the UAV has a limited maximum flight time. We need to achieve the communication goals of all users in the shortest possible time, that is, to ensure that the information received by each user meets latency and quality requirements. This is a non-convex optimization problem, which is very complicated to solve using traditional methods. In order to solve this problem, we propose a deep reinforcement learning algorithm based on Proximal Policy Optimization 2. The simulation results confirm the effectiveness of our proposed algorithm.
无人机辅助语义通信联合优化轨迹与资源分配
语义通信可以有效地节省带宽,并通过传递语义特征来增强通信能力。但是,语义通信有一定的局限性,如应用场景有限、部署不灵活等。为此,本文研究了一种无人机辅助语义通信系统。无人机作为移动基站,为指定区域内的用户提供服务。每个用户对传输延迟和性能有不同的要求,无人机有一个有限的最大飞行时间。我们需要在尽可能短的时间内实现所有用户的通信目标,即保证每个用户接收到的信息满足时延和质量要求。这是一个非凸优化问题,用传统方法求解非常复杂。为了解决这一问题,我们提出了一种基于近端策略优化2的深度强化学习算法。仿真结果验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Communication
Physical Communication ENGINEERING, ELECTRICAL & ELECTRONICTELECO-TELECOMMUNICATIONS
CiteScore
5.00
自引率
9.10%
发文量
212
审稿时长
55 days
期刊介绍: PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published. Topics of interest include but are not limited to: Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信