Tungsten isotope evolution during Earth's formation and new constraints on the viability of accretion simulations

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
D.C. Rubie , K.I. Dale , G. Nathan , M. Nakajima , E.S. Jennings , G.J. Golabek , S.A. Jacobson , A. Morbidelli
{"title":"Tungsten isotope evolution during Earth's formation and new constraints on the viability of accretion simulations","authors":"D.C. Rubie ,&nbsp;K.I. Dale ,&nbsp;G. Nathan ,&nbsp;M. Nakajima ,&nbsp;E.S. Jennings ,&nbsp;G.J. Golabek ,&nbsp;S.A. Jacobson ,&nbsp;A. Morbidelli","doi":"10.1016/j.epsl.2024.119139","DOIUrl":null,"url":null,"abstract":"<div><div>The Hf-W isotopic system is the reference chronometer for determining the chronology of Earth's accretion and differentiation. However, its results depend strongly on uncertain parameters, including the extent of metal-silicate equilibration and the siderophility of tungsten. Here we show that a multistage core-formation model based on N-body accretion simulations, element mass balance and metal-silicate partitioning, largely eliminates these uncertainties. We modified the original model of Rubie et al. (2015) by including (1) smoothed particle hydrodynamics estimates of the depth of melting caused by giant impacts and (2) the isotopic evolution of <sup>182</sup>W. We applied two metal-silicate fractionation mechanisms: one when the metal delivered by the cores of large impactors equilibrates with only a small fraction of the impact-induced magma pond and the other when metal delivered by small impactors emulsifies in global magma oceans before undergoing progressive segregation. The latter is crucial for fitting the W abundance and <sup>182</sup>W anomaly of Earth's mantle. In addition, we show, for the first time, that the duration of magma ocean solidification has a major effect on Earth's tungsten isotope anomaly. We re-evaluate the six Grand Tack N-body simulations of Rubie et al. (2015). Only one reproduces ε<sup>182</sup>W=1.9 ± 0.1 of Earth's mantle, otherwise accretion is either too fast or too slow. Depending on the characteristics of the giant impacts, results predict that the Moon formed either 143–183 Myr or 53–62 Myr after the start of the solar system. Thus, independent evaluations of the Moon's age provide an additional constraint on the validity of accretion simulations.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"651 ","pages":"Article 119139"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24005715","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Hf-W isotopic system is the reference chronometer for determining the chronology of Earth's accretion and differentiation. However, its results depend strongly on uncertain parameters, including the extent of metal-silicate equilibration and the siderophility of tungsten. Here we show that a multistage core-formation model based on N-body accretion simulations, element mass balance and metal-silicate partitioning, largely eliminates these uncertainties. We modified the original model of Rubie et al. (2015) by including (1) smoothed particle hydrodynamics estimates of the depth of melting caused by giant impacts and (2) the isotopic evolution of 182W. We applied two metal-silicate fractionation mechanisms: one when the metal delivered by the cores of large impactors equilibrates with only a small fraction of the impact-induced magma pond and the other when metal delivered by small impactors emulsifies in global magma oceans before undergoing progressive segregation. The latter is crucial for fitting the W abundance and 182W anomaly of Earth's mantle. In addition, we show, for the first time, that the duration of magma ocean solidification has a major effect on Earth's tungsten isotope anomaly. We re-evaluate the six Grand Tack N-body simulations of Rubie et al. (2015). Only one reproduces ε182W=1.9 ± 0.1 of Earth's mantle, otherwise accretion is either too fast or too slow. Depending on the characteristics of the giant impacts, results predict that the Moon formed either 143–183 Myr or 53–62 Myr after the start of the solar system. Thus, independent evaluations of the Moon's age provide an additional constraint on the validity of accretion simulations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信