The influence of small additives on the structure and properties of brass

A.V. Sulitsin , S.V. Brusnitsyn , D.O. Levin , D.A. Usov , V.K. Dubrovin
{"title":"The influence of small additives on the structure and properties of brass","authors":"A.V. Sulitsin ,&nbsp;S.V. Brusnitsyn ,&nbsp;D.O. Levin ,&nbsp;D.A. Usov ,&nbsp;V.K. Dubrovin","doi":"10.1016/j.prostr.2024.11.042","DOIUrl":null,"url":null,"abstract":"<div><div>The paper is devoted to research of the modifiers influence on the structure and properties of complex alloyed brass with a composition 70Cu-13Zn-7Mn-5Al-2Fe-2Si-1Pb. Mischmetal, magnesium-cerium, iron-boron, iron-titanium, niobium ligatures were used as modifiers. Laboratory and industrial experiments have been carried out. The macrostructure and microstructure of the ingots have been studied. The greatest effect on grain refinement was obtained using a magnesium-cerium ligature. It was found that when the magnesium-cerium ligature was introduced, there were no intermetallic accumulations, the average size of which did not exceed 80 μm. In order to facilitate the alloying of the modifier into the melt, it was proposed to use a nickel-magnesium-cerium alloy, since a significant amount of a fine fraction is formed during its production. The use of nickel-magnesium-cerium ligature as a modifier for complex alloyed brass is one of the possible options for using its fine fraction. The ligature amount was varied within 0.01...0.20 % of the melt mass. The experiments results showed that if the modifier amount increases, the average grain size decreases by more than two times. In this case, the average grain size does not change if the modifier amount is more than 0.1 wt. %. The influence of the modifier amount on the mechanical properties of complex alloyed brass has been studied. It was found that there is an increase in the ultimate tensile strength and elongation if a modifier is introduced in an amount of up to 0.05 wt. %. The dependence of hardness on the amount of the introduced modifier is determined. It has been found that the higher the added modifier amount, the higher the alloy hardness. The amount of the modifier is determined as 0.04...0.06 wt. %. It provides an increase in the level of mechanical properties of complex alloyed brass. Micro X-ray spectral analysis of the brass was carried out. The elements distribution in the α-phase, (α+β')-phase and intermetallic compounds in the test and control ingots structure has been studied. It was found that when the modifier is introduced in an amount of 0.05 wt. %, copper and zinc are present in significant amounts in the alloy structure in the α-phase and (α+β')-phase, and iron, silicon and manganese are present in the intermetallic compound. Industrial experiments were carried out using a modifier in an amount of 0.06 wt. %. The microstructure of the ingots has been studied. It has been established that when a modifier is added into the melt, the average area of intermetallic compounds in the alloy structure is 361 μm<sup>2</sup>. This is almost two times less than the average area of intermetallic compounds in the structure of the alloy without a modifier introducing into the melt, which is 676 μm<sup>2</sup>. The addition of a nickel-magnesium-cerium ligature in an amount of 0.06 wt. % to a complex alloyed brass with a composition 70Cu-13Zn-7Mn-5Al-2Fe-2Si-1Pb provides effective grinding of intermetallic compounds and excludes the formation of their conglomerates.</div></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":"65 ","pages":"Pages 282-289"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321624010904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is devoted to research of the modifiers influence on the structure and properties of complex alloyed brass with a composition 70Cu-13Zn-7Mn-5Al-2Fe-2Si-1Pb. Mischmetal, magnesium-cerium, iron-boron, iron-titanium, niobium ligatures were used as modifiers. Laboratory and industrial experiments have been carried out. The macrostructure and microstructure of the ingots have been studied. The greatest effect on grain refinement was obtained using a magnesium-cerium ligature. It was found that when the magnesium-cerium ligature was introduced, there were no intermetallic accumulations, the average size of which did not exceed 80 μm. In order to facilitate the alloying of the modifier into the melt, it was proposed to use a nickel-magnesium-cerium alloy, since a significant amount of a fine fraction is formed during its production. The use of nickel-magnesium-cerium ligature as a modifier for complex alloyed brass is one of the possible options for using its fine fraction. The ligature amount was varied within 0.01...0.20 % of the melt mass. The experiments results showed that if the modifier amount increases, the average grain size decreases by more than two times. In this case, the average grain size does not change if the modifier amount is more than 0.1 wt. %. The influence of the modifier amount on the mechanical properties of complex alloyed brass has been studied. It was found that there is an increase in the ultimate tensile strength and elongation if a modifier is introduced in an amount of up to 0.05 wt. %. The dependence of hardness on the amount of the introduced modifier is determined. It has been found that the higher the added modifier amount, the higher the alloy hardness. The amount of the modifier is determined as 0.04...0.06 wt. %. It provides an increase in the level of mechanical properties of complex alloyed brass. Micro X-ray spectral analysis of the brass was carried out. The elements distribution in the α-phase, (α+β')-phase and intermetallic compounds in the test and control ingots structure has been studied. It was found that when the modifier is introduced in an amount of 0.05 wt. %, copper and zinc are present in significant amounts in the alloy structure in the α-phase and (α+β')-phase, and iron, silicon and manganese are present in the intermetallic compound. Industrial experiments were carried out using a modifier in an amount of 0.06 wt. %. The microstructure of the ingots has been studied. It has been established that when a modifier is added into the melt, the average area of intermetallic compounds in the alloy structure is 361 μm2. This is almost two times less than the average area of intermetallic compounds in the structure of the alloy without a modifier introducing into the melt, which is 676 μm2. The addition of a nickel-magnesium-cerium ligature in an amount of 0.06 wt. % to a complex alloyed brass with a composition 70Cu-13Zn-7Mn-5Al-2Fe-2Si-1Pb provides effective grinding of intermetallic compounds and excludes the formation of their conglomerates.
微量添加剂对黄铜组织和性能的影响
本文研究了改性剂对70Cu-13Zn-7Mn-5Al-2Fe-2Si-1Pb复合合金黄铜组织和性能的影响。改性剂采用复合稀土、镁铈、铁硼、铁钛、铌结扎剂。已进行了实验室和工业试验。对铸锭的宏观组织和显微组织进行了研究。镁铈结扎对晶粒细化的影响最大。结果表明,引入镁铈结扎后,合金中没有金属间沉积,金属间沉积的平均大小不超过80 μm。为了使改性剂合金化到熔体中,建议使用镍镁铈合金,因为在其生产过程中会形成大量的细组分。使用镍镁铈结扎剂作为复合合金黄铜的改性剂是利用其细组分的可能选择之一。结扎量在熔体质量的0.01 ~ 0.20%范围内变化。实验结果表明,随着改性剂用量的增加,平均晶粒尺寸减小2倍以上。在这种情况下,如果改性剂的用量超过0.1 wt. %,平均晶粒尺寸不会改变。研究了改性剂用量对复合合金黄铜力学性能的影响。结果发现,如果引入的改性剂的量高达0.05 wt. %,则会增加极限抗拉强度和伸长率。确定了硬度与改性剂用量的关系。结果表明,改性剂添加量越大,合金硬度越高。改性剂的用量确定为0.04 ~ 0.06 wt. %。它提高了复杂合金黄铜的机械性能水平。对铜进行了微x射线光谱分析。研究了试、控锭组织中α-相、(α+β′)相元素和金属间化合物的分布。结果表明,当改性剂添加量为0.05 wt. %时,合金组织中α-相和(α+β′)相中存在大量的铜和锌,金属间化合物中存在铁、硅和锰。用0.06 wt. %的改性剂进行了工业试验。对铸锭的显微组织进行了研究。结果表明,在熔体中加入改性剂后,合金组织中金属间化合物的平均面积为361 μm2。这几乎是在熔体中不引入改性剂的情况下合金结构中金属间化合物平均面积(676 μm2)的2倍。在含有70Cu-13Zn-7Mn-5Al-2Fe-2Si-1Pb的复合合金黄铜中加入0.06 wt. %的镍镁铈结合力,可有效磨削金属间化合物,并防止其形成砾石。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信