{"title":"Mesencephalic astrocyte-derived neurotrophic factor inhibits neuroinflammation through autophagy-mediated α-synuclein degradation","authors":"Kai-Ge Zhou , Yi-Bin Huang , Zi-Wen Zhu , Ming Jiang , Ling-Jing Jin , Qiang Guan , Lu-Lu Tian , Jing-Xing Zhang","doi":"10.1016/j.archger.2024.105738","DOIUrl":null,"url":null,"abstract":"<div><div>Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder marked by the progressive loss of dopamine neurons in the substantia nigra. α-synuclein (SNCA) aggregation-induced microglia activation and neuroinflammation play vital role in the pathology of PD. Our previous studies showed that mesencephalic astrocyte-derived neurotrophic factor (MANF) could inhibit SNCA accumulation and Lipopolysaccharides (LPS)-induced neuroinflammation, but the specific molecular mechanism remains unclear. In this study, we showed that knock-down the expression of MANF leads to the up-regulation of inflammatory factor tumor necrosis factor-α (TNF-α). Exogenous MANF protein inhibits LPS-induced neuroinflammation in BV2 cells. Additionally, our results indicated that knock-down of the expression of MANF triggered autophagic pathway dysfunction, while exogenous addition of MANF protein or using adeno-associated virus 8 (AAV8) mediated MANF over-expression could activate the autophagic system and subsequently suppress SNCA accumulation. Furthermore, using autophagy inhibitor to block autophagic flux, we found that MANF prevented neuroinflammation by autophagy-mediated SNCA degradation. Collectively, this study indicated that MANF has potential therapeutic value for PD. Autophagy and its role in MANF-mediated anti-inflammatory properties may provide new sights that target SNCA pathology in PD.</div></div>","PeriodicalId":8306,"journal":{"name":"Archives of gerontology and geriatrics","volume":"131 ","pages":"Article 105738"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of gerontology and geriatrics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167494324004138","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder marked by the progressive loss of dopamine neurons in the substantia nigra. α-synuclein (SNCA) aggregation-induced microglia activation and neuroinflammation play vital role in the pathology of PD. Our previous studies showed that mesencephalic astrocyte-derived neurotrophic factor (MANF) could inhibit SNCA accumulation and Lipopolysaccharides (LPS)-induced neuroinflammation, but the specific molecular mechanism remains unclear. In this study, we showed that knock-down the expression of MANF leads to the up-regulation of inflammatory factor tumor necrosis factor-α (TNF-α). Exogenous MANF protein inhibits LPS-induced neuroinflammation in BV2 cells. Additionally, our results indicated that knock-down of the expression of MANF triggered autophagic pathway dysfunction, while exogenous addition of MANF protein or using adeno-associated virus 8 (AAV8) mediated MANF over-expression could activate the autophagic system and subsequently suppress SNCA accumulation. Furthermore, using autophagy inhibitor to block autophagic flux, we found that MANF prevented neuroinflammation by autophagy-mediated SNCA degradation. Collectively, this study indicated that MANF has potential therapeutic value for PD. Autophagy and its role in MANF-mediated anti-inflammatory properties may provide new sights that target SNCA pathology in PD.
期刊介绍:
Archives of Gerontology and Geriatrics provides a medium for the publication of papers from the fields of experimental gerontology and clinical and social geriatrics. The principal aim of the journal is to facilitate the exchange of information between specialists in these three fields of gerontological research. Experimental papers dealing with the basic mechanisms of aging at molecular, cellular, tissue or organ levels will be published.
Clinical papers will be accepted if they provide sufficiently new information or are of fundamental importance for the knowledge of human aging. Purely descriptive clinical papers will be accepted only if the results permit further interpretation. Papers dealing with anti-aging pharmacological preparations in humans are welcome. Papers on the social aspects of geriatrics will be accepted if they are of general interest regarding the epidemiology of aging and the efficiency and working methods of the social organizations for the health care of the elderly.