Investigation on the thermal activation of peroxydisulfate by using the hydrodynamic cavitation: A case study on tetracycline degradation

IF 5.9 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Kexin Xiang , Xi Yuan , Zhewen Shao , Shuchang Liu , Enhong Lei , Yan Liu , Feng Hong , Jinping Jia , Yingping Huang
{"title":"Investigation on the thermal activation of peroxydisulfate by using the hydrodynamic cavitation: A case study on tetracycline degradation","authors":"Kexin Xiang ,&nbsp;Xi Yuan ,&nbsp;Zhewen Shao ,&nbsp;Shuchang Liu ,&nbsp;Enhong Lei ,&nbsp;Yan Liu ,&nbsp;Feng Hong ,&nbsp;Jinping Jia ,&nbsp;Yingping Huang","doi":"10.1016/j.jes.2024.11.018","DOIUrl":null,"url":null,"abstract":"<div><div>The synergetic technology of hydrodynamic cavitation (HC) and peroxydisulfate (PDS) has been adopted for the treatment of organic pollutants, while the rationale behind the thermal-activation of PDS in this process remains lacking. This paper presented investigation on the degradation of tetracycline under two types of operating conditions, including “internal reaction conditions” (pH value and TC/PDS molar ratio) and “external physical conditions” (hole shape, solution temperature and inlet pressure). Special emphasis was paid on the analysis of thermal effects through a robust modeling approach. The results showed that a synergy index of 6.26 and a degradation rate of 56.71 % could be obtained by the HC-PDS process, respectively, when the reaction conditions were optimized. Quenching experiment revealed that •OH and •SO<sub>4</sub><sup>-</sup> were the predominant free radicals and their contribution to the degradation was 75.4 % and 24.6 % respectively, since a part of •SO<sub>4</sub><sup>-</sup> was transformed into •OH in the solution. The thermal activation of PDS mainly occurred near the hole where the fitting temperature was around 340 K, while •OH was generated in the bubble collapse region downstream the hole, where the temperature was much higher and favorable for the cleavage of water molecular. The average temperature under different external physical conditions was in good consistence with the degradation rates. This research developed a useful method to effectively evaluate the activation extent of PDS by HC and could provide reliable guidance for further development of cavitational reactors to treat organic pollutants based on this hybrid approach.</div></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"155 ","pages":"Pages 73-85"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224005503","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The synergetic technology of hydrodynamic cavitation (HC) and peroxydisulfate (PDS) has been adopted for the treatment of organic pollutants, while the rationale behind the thermal-activation of PDS in this process remains lacking. This paper presented investigation on the degradation of tetracycline under two types of operating conditions, including “internal reaction conditions” (pH value and TC/PDS molar ratio) and “external physical conditions” (hole shape, solution temperature and inlet pressure). Special emphasis was paid on the analysis of thermal effects through a robust modeling approach. The results showed that a synergy index of 6.26 and a degradation rate of 56.71 % could be obtained by the HC-PDS process, respectively, when the reaction conditions were optimized. Quenching experiment revealed that •OH and •SO4- were the predominant free radicals and their contribution to the degradation was 75.4 % and 24.6 % respectively, since a part of •SO4- was transformed into •OH in the solution. The thermal activation of PDS mainly occurred near the hole where the fitting temperature was around 340 K, while •OH was generated in the bubble collapse region downstream the hole, where the temperature was much higher and favorable for the cleavage of water molecular. The average temperature under different external physical conditions was in good consistence with the degradation rates. This research developed a useful method to effectively evaluate the activation extent of PDS by HC and could provide reliable guidance for further development of cavitational reactors to treat organic pollutants based on this hybrid approach.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Sciences-china
Journal of Environmental Sciences-china 环境科学-环境科学
CiteScore
13.70
自引率
0.00%
发文量
6354
审稿时长
2.6 months
期刊介绍: The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信