Jingxin Zhang , Min Wang , Xu Xu , Donghua Zhou , Xia Hong
{"title":"Adaptive monitoring for multimode nonstationary processes using cointegration analysis and probabilistic slow feature analysis","authors":"Jingxin Zhang , Min Wang , Xu Xu , Donghua Zhou , Xia Hong","doi":"10.1016/j.conengprac.2024.106209","DOIUrl":null,"url":null,"abstract":"<div><div>The condition monitoring of nonlinear, nonstationary and multimode processes is a difficult problem. Traditional multimode process monitoring methods generally assume that data from all potential modes are available, yet new modes may appear continuously in practice. This paper investigates an intelligent adaptive monitoring method for multimode nonstationary processes, which can deal with the appearance of new modes with ease. A comprehensive framework is proposed to decompose feature subspaces. First, long-term equilibrium features are extracted by adaptive cointegration analysis (ACA) to identify the mode, without using any prior mode information intelligently for online applications. Then, recursive attention probabilistic slow feature analysis integrated with elastic weight consolidation (RAttPSFA-EWC) is investigated to deal with the remaining dynamic information and extract dynamic and static slow features to maintain continual learning for multimodes. Once a new mode is detected automatically, the previously learned knowledge is consolidated while extracting new features, which is beneficial to enhancing the performance of similar modes. The proposed ACA-RAttPSFA-EWC acts as an online adaptive method by parameter updates with incoming normal data. Furthermore, several advanced methods are compared to demonstrate the strengths of ACA-RAttPSFA-EWC, and the proposed method is validated to be effective using a numerical case and a practical system.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"156 ","pages":"Article 106209"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096706612400368X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The condition monitoring of nonlinear, nonstationary and multimode processes is a difficult problem. Traditional multimode process monitoring methods generally assume that data from all potential modes are available, yet new modes may appear continuously in practice. This paper investigates an intelligent adaptive monitoring method for multimode nonstationary processes, which can deal with the appearance of new modes with ease. A comprehensive framework is proposed to decompose feature subspaces. First, long-term equilibrium features are extracted by adaptive cointegration analysis (ACA) to identify the mode, without using any prior mode information intelligently for online applications. Then, recursive attention probabilistic slow feature analysis integrated with elastic weight consolidation (RAttPSFA-EWC) is investigated to deal with the remaining dynamic information and extract dynamic and static slow features to maintain continual learning for multimodes. Once a new mode is detected automatically, the previously learned knowledge is consolidated while extracting new features, which is beneficial to enhancing the performance of similar modes. The proposed ACA-RAttPSFA-EWC acts as an online adaptive method by parameter updates with incoming normal data. Furthermore, several advanced methods are compared to demonstrate the strengths of ACA-RAttPSFA-EWC, and the proposed method is validated to be effective using a numerical case and a practical system.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.