Mantle induced hydration and oxidation of intracontinental granite sources in the North China Craton

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Chuan-Mao Yang , Yi-Gang Xu , Xiao-Ping Xia , Jin-Hui Yang , Xiao-Long Huang , Christopher J. Spencer , Jin-Feng Sun , Ze-Xian Cui , Meng-Jing Li , Wan-Feng Zhang , Qing Yang
{"title":"Mantle induced hydration and oxidation of intracontinental granite sources in the North China Craton","authors":"Chuan-Mao Yang ,&nbsp;Yi-Gang Xu ,&nbsp;Xiao-Ping Xia ,&nbsp;Jin-Hui Yang ,&nbsp;Xiao-Long Huang ,&nbsp;Christopher J. Spencer ,&nbsp;Jin-Feng Sun ,&nbsp;Ze-Xian Cui ,&nbsp;Meng-Jing Li ,&nbsp;Wan-Feng Zhang ,&nbsp;Qing Yang","doi":"10.1016/j.epsl.2024.119177","DOIUrl":null,"url":null,"abstract":"<div><div>Arc magmatism is typically highly oxidized, due to the influx of oxidizing aqueous fluids released from the subducting plate. The observation that some intracontinental A- and I-type granites also exhibit high oxidation presents a significant challenge in igneous petrology and geodynamics. This is particularly true for regions such as the North China Craton (NCC), situated over 1000 km from the trench. In this study, we measured water content, oxygen fugacity (<span><math><mrow><mi>f</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>), and O-Hf isotopes in zircons from the late Mesozoic granites from the NCC. The results reveal positive correlations between water content and <span><math><mrow><mi>f</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>, and between water content and <span><math><mrow><msub><mrow><mi>ε</mi></mrow><mtext>Hf</mtext></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>, indicating the predominant control of primary magma composition, rather than magmatic differentiation, on water content and <span><math><mrow><mi>f</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> of zircon. The Early Cretaceous A-type and I-type granites, which involved greater amount of mantle-derived melts, exhibit more elevated water, Nb, Ta, and <span><math><mrow><mi>f</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> than the Jurassic granites. This suggests that the hydration and oxidization of intracontinental granitoids of the NCC are strongly influenced by the ingress of mantle-derived oxidized hydrous melts/aqueous fluids to the granitoid source, which were likely released from the Paleo-Pacific plate at a greater depth than the sub-arc mantle. The proposed model involves significant water in intracontinental crustal melting, thereby challenging the paradigm of intraplate A- and I-type granite genesis and shedding light on the crustal and mantle processes during cratonic destruction.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"651 ","pages":"Article 119177"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24006095","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Arc magmatism is typically highly oxidized, due to the influx of oxidizing aqueous fluids released from the subducting plate. The observation that some intracontinental A- and I-type granites also exhibit high oxidation presents a significant challenge in igneous petrology and geodynamics. This is particularly true for regions such as the North China Craton (NCC), situated over 1000 km from the trench. In this study, we measured water content, oxygen fugacity (fO2), and O-Hf isotopes in zircons from the late Mesozoic granites from the NCC. The results reveal positive correlations between water content and fO2, and between water content and εHf(t), indicating the predominant control of primary magma composition, rather than magmatic differentiation, on water content and fO2 of zircon. The Early Cretaceous A-type and I-type granites, which involved greater amount of mantle-derived melts, exhibit more elevated water, Nb, Ta, and fO2 than the Jurassic granites. This suggests that the hydration and oxidization of intracontinental granitoids of the NCC are strongly influenced by the ingress of mantle-derived oxidized hydrous melts/aqueous fluids to the granitoid source, which were likely released from the Paleo-Pacific plate at a greater depth than the sub-arc mantle. The proposed model involves significant water in intracontinental crustal melting, thereby challenging the paradigm of intraplate A- and I-type granite genesis and shedding light on the crustal and mantle processes during cratonic destruction.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信