State-of-the-art signal amplification strategies for nucleic acid and non-nucleic acid biosensors

IF 6.5 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ijaz Gul , Muhammad Akmal Raheem , Md. Reyad-ul-Ferdous , Xi Yuan , Zhenglin Chen , Chenying lv , Minjiang Chen , Jiansong Ji , Duanpo Wu , Qiang Zhao , Chenggang Yan , Dongmei Yu
{"title":"State-of-the-art signal amplification strategies for nucleic acid and non-nucleic acid biosensors","authors":"Ijaz Gul ,&nbsp;Muhammad Akmal Raheem ,&nbsp;Md. Reyad-ul-Ferdous ,&nbsp;Xi Yuan ,&nbsp;Zhenglin Chen ,&nbsp;Chenying lv ,&nbsp;Minjiang Chen ,&nbsp;Jiansong Ji ,&nbsp;Duanpo Wu ,&nbsp;Qiang Zhao ,&nbsp;Chenggang Yan ,&nbsp;Dongmei Yu","doi":"10.1016/j.snr.2024.100268","DOIUrl":null,"url":null,"abstract":"<div><div>Biosensors have garnered substantial attention as an emerging toolbox for analyzing biomarkers, physiological processes, food, and environmental metrices. Rapid, sensitive, and selective detection is pivotal to the practical utility of a biosensing system. Over the last few years, strides have been made in biosensing research to develop next-generation sensing systems that meet WHO's ASSURED criteria. Shorter response times, accuracy, high sensitivity, and selectivity are immensely important parameters of a biosensor, directly impacted by the biosensing signal generation and detection modality. Herein, we critically analyze the state-of-the-art signal amplification strategies for various nucleic acid and non-nucleic acid bioanalytes to improve the analytical performance of biosensing systems. We first provide a brief overview of the key components of biosensors. Next, we provide insights on state-of-the-art signal amplification strategies by dividing them into target preamplification, target enrichment, cascade reactions, biocomponent engineering, exploring functional materials, optimizing reaction conditions, designing novel microfluidic devices, and harnessing AI, along with selected examples. We evaluate the development trends of these signal enhancement approaches and discuss <em>pros</em> and <em>cons</em> of each approach. Finally, we highlight current challenges and future considerations for this emerging interdisciplinary research area.</div></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"9 ","pages":"Article 100268"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053924000845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biosensors have garnered substantial attention as an emerging toolbox for analyzing biomarkers, physiological processes, food, and environmental metrices. Rapid, sensitive, and selective detection is pivotal to the practical utility of a biosensing system. Over the last few years, strides have been made in biosensing research to develop next-generation sensing systems that meet WHO's ASSURED criteria. Shorter response times, accuracy, high sensitivity, and selectivity are immensely important parameters of a biosensor, directly impacted by the biosensing signal generation and detection modality. Herein, we critically analyze the state-of-the-art signal amplification strategies for various nucleic acid and non-nucleic acid bioanalytes to improve the analytical performance of biosensing systems. We first provide a brief overview of the key components of biosensors. Next, we provide insights on state-of-the-art signal amplification strategies by dividing them into target preamplification, target enrichment, cascade reactions, biocomponent engineering, exploring functional materials, optimizing reaction conditions, designing novel microfluidic devices, and harnessing AI, along with selected examples. We evaluate the development trends of these signal enhancement approaches and discuss pros and cons of each approach. Finally, we highlight current challenges and future considerations for this emerging interdisciplinary research area.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
60
审稿时长
49 days
期刊介绍: Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications. For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信