Cyclic effects of sulfur deposition on CO2 by vacuum pressure swing adsorption from blast furnace gas

Yangyang Guo , kaige Du , Lei Luo , Shuoguo Gu , Na Geng , Tingyu Zhu
{"title":"Cyclic effects of sulfur deposition on CO2 by vacuum pressure swing adsorption from blast furnace gas","authors":"Yangyang Guo ,&nbsp;kaige Du ,&nbsp;Lei Luo ,&nbsp;Shuoguo Gu ,&nbsp;Na Geng ,&nbsp;Tingyu Zhu","doi":"10.1016/j.ccst.2025.100361","DOIUrl":null,"url":null,"abstract":"<div><div>Vacuum pressure swing adsorption has a high potential to reduce CO<sub>2</sub> from blast furnace gas, while there are also H<sub>2</sub>S and COS exist in the blast furnace gas, and the sulfur deposition effect on CO<sub>2</sub> adsorption over zeolite was quite necessary to be investigated. In this work, laboratory fixed bed evaluation and two-tower pressure swing adsorption apparatus were employed and it has been found that sulfur deposition occurs only in the presence of coexisting H<sub>2</sub>S and O<sub>2</sub> without water and the highest sulfur accumulation is 13.21 % for the adsorbent under CO<sub>2</sub>+H<sub>2</sub>S+COS+O<sub>2</sub> atmosphere. Cyclic evaluation of H<sub>2</sub>S and COS on CO<sub>2</sub> cyclic adsorption was first reported, and the sulfur is ultimately converted into S monomers and sulfate, which can be deposited inside the pore channel, with the specific surface area reduced 82.26 % of the adsorbent. Furthermore, sulfur deposition gradually diffused with the upward shift of the adsorption mass transfer zone, and the sulfur deposition densities are calculated to be approximately 0.34 g/cm<sup>3</sup>. These mechanisms and data demonstrate the significant impact of sulfur deposition on sustainable CO₂ capture in industrial processes, and provide important guidance for the design of CO₂ capture technologies, which is of great importance for carbon reduction.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100361"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vacuum pressure swing adsorption has a high potential to reduce CO2 from blast furnace gas, while there are also H2S and COS exist in the blast furnace gas, and the sulfur deposition effect on CO2 adsorption over zeolite was quite necessary to be investigated. In this work, laboratory fixed bed evaluation and two-tower pressure swing adsorption apparatus were employed and it has been found that sulfur deposition occurs only in the presence of coexisting H2S and O2 without water and the highest sulfur accumulation is 13.21 % for the adsorbent under CO2+H2S+COS+O2 atmosphere. Cyclic evaluation of H2S and COS on CO2 cyclic adsorption was first reported, and the sulfur is ultimately converted into S monomers and sulfate, which can be deposited inside the pore channel, with the specific surface area reduced 82.26 % of the adsorbent. Furthermore, sulfur deposition gradually diffused with the upward shift of the adsorption mass transfer zone, and the sulfur deposition densities are calculated to be approximately 0.34 g/cm3. These mechanisms and data demonstrate the significant impact of sulfur deposition on sustainable CO₂ capture in industrial processes, and provide important guidance for the design of CO₂ capture technologies, which is of great importance for carbon reduction.

Abstract Image

真空变压吸附高炉煤气中硫沉积对CO2的循环影响
真空变压吸附对高炉煤气中CO2的还原潜力较大,而高炉煤气中还存在H2S和COS,硫沉积对沸石上CO2吸附的影响非常有必要进行研究。本研究采用实验室固定床评价和双塔变压吸附装置,发现只有在H2S和O2共存的情况下才会发生硫沉积,在CO2+H2S+COS+O2气氛下吸附剂的硫积累最高为13.21%。首次报道了H2S和COS对CO2循环吸附的循环评价,硫最终转化为S单体和硫酸盐,可沉积在孔道内,吸附剂比表面积减少82.26%。硫沉积随着吸附传质带的向上移动而逐渐扩散,硫沉积密度约为0.34 g/cm3。这些机制和数据证明了硫沉积对工业过程中可持续CO₂捕集的显著影响,为CO₂捕集技术的设计提供了重要指导,对碳减排具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信