Wenlong Ding , Haoyu Liu , Jiayi Liao , Tongtong Wang , Dongze Li , Yu Xu , Shiyu Zhou , Zhiqiang Wu , Wenhui Shi , Jiangnan Shen , Junbin Liao
{"title":"Endowing the nanostructured ion channels of anion conductive membranes with negative charge to boost the Cl−/SO42− ion separation via electrodialysis","authors":"Wenlong Ding , Haoyu Liu , Jiayi Liao , Tongtong Wang , Dongze Li , Yu Xu , Shiyu Zhou , Zhiqiang Wu , Wenhui Shi , Jiangnan Shen , Junbin Liao","doi":"10.1016/j.advmem.2025.100128","DOIUrl":null,"url":null,"abstract":"<div><div>Construction of homogeneous polymer ion-exchange membranes (IEMs) with suitable ion transport channels and stable structures is crucial to the separation of mono-/multi-valent anions. Amphoteric ion-exchange membrane (AIEM) is a special type of IEM that possesses unique properties due to the presence of both anion exchange groups and cation exchange groups. In this work, we have grafted 1-bromoheptane and 3-bromopropanesulfonate onto the poly(aryl ether sulfone) chain through nucleophilic substitution reactions. Unlike the IEM attaching different ion-change functional groups onto one side-chain, this kind of AIEM bears two kinds of ion-change functional groups on dual side-chains. The results show that the as-prepared AIEMs could maintain low water absorption (<20 %) and swelling ratios (<11 %). The optimal surface area resistance is 6.31 Ω∙cm<sup>2</sup>. The perm-selectivity (Cl<sup>−</sup>/SO<sub>4</sub><sup>2−</sup>) of the optimized PAES-TA/BS-0.85 AIEMs in a binary mixed solution system at 2.5 mA∙cm<sup>2</sup> could be achieved as high as 67.46, which is much higher than commercial ACS IEMs under the same conditions. Small Angle X-ray scattering reveals a distinct phase separation pattern within the AIEM matrix, which is due to the introduction of sulfonates to increase the hydrophilicity of the side-chains. The combined effects of pore size screening and electrostatic repulsion render the high selectivity of as-prepared AIEMs.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100128"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823425000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Construction of homogeneous polymer ion-exchange membranes (IEMs) with suitable ion transport channels and stable structures is crucial to the separation of mono-/multi-valent anions. Amphoteric ion-exchange membrane (AIEM) is a special type of IEM that possesses unique properties due to the presence of both anion exchange groups and cation exchange groups. In this work, we have grafted 1-bromoheptane and 3-bromopropanesulfonate onto the poly(aryl ether sulfone) chain through nucleophilic substitution reactions. Unlike the IEM attaching different ion-change functional groups onto one side-chain, this kind of AIEM bears two kinds of ion-change functional groups on dual side-chains. The results show that the as-prepared AIEMs could maintain low water absorption (<20 %) and swelling ratios (<11 %). The optimal surface area resistance is 6.31 Ω∙cm2. The perm-selectivity (Cl−/SO42−) of the optimized PAES-TA/BS-0.85 AIEMs in a binary mixed solution system at 2.5 mA∙cm2 could be achieved as high as 67.46, which is much higher than commercial ACS IEMs under the same conditions. Small Angle X-ray scattering reveals a distinct phase separation pattern within the AIEM matrix, which is due to the introduction of sulfonates to increase the hydrophilicity of the side-chains. The combined effects of pore size screening and electrostatic repulsion render the high selectivity of as-prepared AIEMs.