{"title":"Molecularly imprinted (3, 4-ethylenedioxythiophene) polymer based electrochemical non-enzymatic glucose sensor","authors":"Ganesan Kaniraja , Murugesan Karthikeyan , Marimuthu Dhinesh Kumar , Periyasamy Ananthappan , Anaswara Anil , Vairathevar Sivasamy Vasantha , Karuppiah Arunsunai Kumar , Chandran Karunakaran","doi":"10.1016/j.orgel.2024.107181","DOIUrl":null,"url":null,"abstract":"<div><div>Glucose plays a pivotal role as a vital biological marker in the diagnosis of diabetes, showcasing its potential utility for the early detection of diabetes mellitus (DM) in this study. Hence, a glucose sensor was developed for the non-enzymatic measurement of glucose. This sensor utilizes a molecularly imprinted polymer (MIP) attached to a conducting poly(3, 4-ethylenedioxythiophene) (PEDOT) layer. Here, the monomer EDOT was electropolymerized on a screen-printed carbon electrode (SPCE) with template glucose present to create the sensitive layer. Furthermore, electrochemical characterizations were performed using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) on a PBS solution containing 5 mM K<sub>4</sub>[Fe(CN)<sub>6</sub>]/K<sub>3</sub>[Fe(CN)<sub>6</sub>] as a redox probe. Using scanning electron microscopy (SEM), the generated sensors were morphologically described. Specifically, this glucose sensors linear response was within the range of 0.5 mM–6.5 mM, and its low detection limit was 0.025 mM (sensitivity: 0.036 mM μA<sup>−1</sup>). Moreover, the applicability of the technique was successfully confirmed with the detection of glucose in biological (human plasma) samples. Our study demonstrated a low-cost, simple, and effective sensing platform for non-enzymatic glucose detection, making it a feasible tool for the future progress of accurate and reliable non-invasive diabetes mellitus diagnosis.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"138 ","pages":"Article 107181"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001927","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Glucose plays a pivotal role as a vital biological marker in the diagnosis of diabetes, showcasing its potential utility for the early detection of diabetes mellitus (DM) in this study. Hence, a glucose sensor was developed for the non-enzymatic measurement of glucose. This sensor utilizes a molecularly imprinted polymer (MIP) attached to a conducting poly(3, 4-ethylenedioxythiophene) (PEDOT) layer. Here, the monomer EDOT was electropolymerized on a screen-printed carbon electrode (SPCE) with template glucose present to create the sensitive layer. Furthermore, electrochemical characterizations were performed using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) on a PBS solution containing 5 mM K4[Fe(CN)6]/K3[Fe(CN)6] as a redox probe. Using scanning electron microscopy (SEM), the generated sensors were morphologically described. Specifically, this glucose sensors linear response was within the range of 0.5 mM–6.5 mM, and its low detection limit was 0.025 mM (sensitivity: 0.036 mM μA−1). Moreover, the applicability of the technique was successfully confirmed with the detection of glucose in biological (human plasma) samples. Our study demonstrated a low-cost, simple, and effective sensing platform for non-enzymatic glucose detection, making it a feasible tool for the future progress of accurate and reliable non-invasive diabetes mellitus diagnosis.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.