Julia Riemer , Sascha Wischniewski , Thomas Jaitner
{"title":"Quantifying the biomechanical effects of back-support exoskeletons on work movements using statistical parametric mapping","authors":"Julia Riemer , Sascha Wischniewski , Thomas Jaitner","doi":"10.1016/j.jsr.2024.09.010","DOIUrl":null,"url":null,"abstract":"<div><div><em>Introduction:</em> In response to physically demanding industrial environments, back-support exoskeletons (BSEs) have emerged as assistive devices. However, their functional interaction with body structures and potential in preventing musculoskeletal disorders (MSDs) remain unclear. The objective of this study was to analyze biomechanical motion sequences throughout the entire process of different work movements and provide a comprehensive assessment of the influence of BSE. <em>Method:</em> Using statistical parametric mapping (SPM) methodology, we examined and quantify the magnitude of significant effects of BSEs on muscle activity (MA) and kinematic movement patterns during lifting, carrying, walking, and static bending in a standardized manner. <em>Results:</em> Significant changes with large effect sizes were identified during the downward phase of the lifting task, indicating decreased MA in the musculus (M.) biceps femoris and a reduced hip flexion. The usage of BSEs during carrying and walking resulted in a decreased MA of M. biceps femoris during the legs’ pre- and mid-swing phases, accompanied by an increased knee and ankle flexion. These changes in MA and kinematics, especially when the BSEs exert pressure on the leg shells through their supporting function, may be indicative of strain in other body regions due to the BSEs. <em>Practical Applications:</em> We suggest that the evaluated effects may lead to the non-use of BSEs in the workplace and should therefore be considered in the development of alternative BSE designs.</div></div>","PeriodicalId":48224,"journal":{"name":"Journal of Safety Research","volume":"91 ","pages":"Pages 492-504"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Safety Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022437524001294","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: In response to physically demanding industrial environments, back-support exoskeletons (BSEs) have emerged as assistive devices. However, their functional interaction with body structures and potential in preventing musculoskeletal disorders (MSDs) remain unclear. The objective of this study was to analyze biomechanical motion sequences throughout the entire process of different work movements and provide a comprehensive assessment of the influence of BSE. Method: Using statistical parametric mapping (SPM) methodology, we examined and quantify the magnitude of significant effects of BSEs on muscle activity (MA) and kinematic movement patterns during lifting, carrying, walking, and static bending in a standardized manner. Results: Significant changes with large effect sizes were identified during the downward phase of the lifting task, indicating decreased MA in the musculus (M.) biceps femoris and a reduced hip flexion. The usage of BSEs during carrying and walking resulted in a decreased MA of M. biceps femoris during the legs’ pre- and mid-swing phases, accompanied by an increased knee and ankle flexion. These changes in MA and kinematics, especially when the BSEs exert pressure on the leg shells through their supporting function, may be indicative of strain in other body regions due to the BSEs. Practical Applications: We suggest that the evaluated effects may lead to the non-use of BSEs in the workplace and should therefore be considered in the development of alternative BSE designs.
期刊介绍:
Journal of Safety Research is an interdisciplinary publication that provides for the exchange of ideas and scientific evidence capturing studies through research in all areas of safety and health, including traffic, workplace, home, and community. This forum invites research using rigorous methodologies, encourages translational research, and engages the global scientific community through various partnerships (e.g., this outreach includes highlighting some of the latest findings from the U.S. Centers for Disease Control and Prevention).