{"title":"Random walks, equidistribution and graphical designs","authors":"Stefan Steinerberger, Rekha R. Thomas","doi":"10.1016/j.aam.2024.102837","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> be a <em>d</em>-regular graph on <em>n</em> vertices and let <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> be a probability measure on <em>V</em>. The act of moving to a randomly chosen neighbor leads to a sequence of probability measures supported on <em>V</em> given by <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mi>A</mi><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, where <em>A</em> is the adjacency matrix and <em>D</em> is the diagonal matrix of vertex degrees of <em>G</em>. Ordering the eigenvalues of <span><math><mi>A</mi><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> as <span><math><mn>1</mn><mo>=</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo><mo>≥</mo><mo>…</mo><mo>≥</mo><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>|</mo><mo>≥</mo><mn>0</mn></math></span>, it is well-known that the graphs for which <span><math><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo></math></span> is small are those in which the random walk process converges quickly to the uniform distribution: for all initial probability measures <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and all <span><math><mi>k</mi><mo>≥</mo><mn>0</mn></math></span>,<span><span><span><math><munder><mo>∑</mo><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></munder><msup><mrow><mo>|</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>≤</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msubsup><mo>.</mo></math></span></span></span> One could wonder whether this rate can be improved for specific initial probability measures <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. We show that if <em>G</em> is regular, then for any <span><math><mn>1</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>n</mi></math></span>, there exists a probability measure <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> supported on at most <em>ℓ</em> vertices so that<span><span><span><math><munder><mo>∑</mo><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></munder><msup><mrow><mo>|</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>≤</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msubsup><mo>.</mo></math></span></span></span></div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"165 ","pages":"Article 102837"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001696","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a d-regular graph on n vertices and let be a probability measure on V. The act of moving to a randomly chosen neighbor leads to a sequence of probability measures supported on V given by , where A is the adjacency matrix and D is the diagonal matrix of vertex degrees of G. Ordering the eigenvalues of as , it is well-known that the graphs for which is small are those in which the random walk process converges quickly to the uniform distribution: for all initial probability measures and all , One could wonder whether this rate can be improved for specific initial probability measures . We show that if G is regular, then for any , there exists a probability measure supported on at most ℓ vertices so that
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.