María F. Estrada , Rodrigo Cienfuegos , Alejandro Urrutia , Patricio A. Catalán , Patricio Winckler
{"title":"Forward energy grade line analysis for tsunami inundation mapping","authors":"María F. Estrada , Rodrigo Cienfuegos , Alejandro Urrutia , Patricio A. Catalán , Patricio Winckler","doi":"10.1016/j.coastaleng.2024.104673","DOIUrl":null,"url":null,"abstract":"<div><div>A simplified model using 1D topobathymetric profiles for generating tsunami inundation maps is implemented and evaluated. The approach is a modification of the ASCE Energy Grade Line Analysis, that allows estimation of the maximum inundation distances using an iterative method. The modified methodology is implemented in three coastal cities in central Chile and compared with a database of 5400 full tsunami simulations obtained from a Nonlinear Shallow Water Equations solver. The key parameter of the model is based on the Froude number, for which three parameterizations and a range of values are tested. Results show that errors in the estimation of the areal extent of the inundation can be as low as 4%, after calibration. However, calibration is site specific and the optimal solution depends on the geographical characteristics of the area of interest. A sensitivity analysis based on the aleatoric sampling of the full tsunami simulation database show that as little as 100 inundation maps are required to perform the calibration of the model. This is a manageable number that offers reduced computational costs when compared with full tsunami simulations, and even those required to train other surrogate models using machine learning.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"197 ","pages":"Article 104673"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924002217","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
A simplified model using 1D topobathymetric profiles for generating tsunami inundation maps is implemented and evaluated. The approach is a modification of the ASCE Energy Grade Line Analysis, that allows estimation of the maximum inundation distances using an iterative method. The modified methodology is implemented in three coastal cities in central Chile and compared with a database of 5400 full tsunami simulations obtained from a Nonlinear Shallow Water Equations solver. The key parameter of the model is based on the Froude number, for which three parameterizations and a range of values are tested. Results show that errors in the estimation of the areal extent of the inundation can be as low as 4%, after calibration. However, calibration is site specific and the optimal solution depends on the geographical characteristics of the area of interest. A sensitivity analysis based on the aleatoric sampling of the full tsunami simulation database show that as little as 100 inundation maps are required to perform the calibration of the model. This is a manageable number that offers reduced computational costs when compared with full tsunami simulations, and even those required to train other surrogate models using machine learning.
期刊介绍:
Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.