Engineering stable Ti3+ defects in a titanium dioxide matrix by wet bead-milling: Visible-light assisted efficient photocatalytic hydrogen production from water

Q2 Materials Science
Shoichi Somekawa , Sayaka Yanagida , Naoki Tachibana , Hiroaki Imai , Shigeru Nakazawa
{"title":"Engineering stable Ti3+ defects in a titanium dioxide matrix by wet bead-milling: Visible-light assisted efficient photocatalytic hydrogen production from water","authors":"Shoichi Somekawa ,&nbsp;Sayaka Yanagida ,&nbsp;Naoki Tachibana ,&nbsp;Hiroaki Imai ,&nbsp;Shigeru Nakazawa","doi":"10.1016/j.crgsc.2024.100423","DOIUrl":null,"url":null,"abstract":"<div><div>Solar-driven hydrogen production technologies are of increasing interest. In this work, Ti<sup>3+</sup> was incorporated into titanium dioxide via wet bead-milling, resulting in enhanced photocatalytic activity under both UV and visible light irradiation. The broad optical absorption obtained from the presence of Ti<sup>3+</sup> ranged from the visible to near-infrared regions of the spectrum (specifically from 400 to over 900 nm) and this absorption could be enhanced by increasing the diameter of the beads used for wet milling. The hydrogen production rate from water in response to ultraviolet (UV)-visible light with ethanol as a sacrificial reagent was also found to vary depending on the bead diameter. Producing the optimal level of Ti<sup>3+</sup> incorporation in the titanium oxide matrix while maintaining a high specific surface area increased the extent of hydrogen production during water decomposition. A sample prepared using 0.3 mm diameter beads exhibited the highest hydrogen production rate of 145 μmol h<sup>−1</sup> g<sup>−1</sup>, which was 15 times that obtained from commercially available anatase-type titanium dioxide having higher specific surface area. The hydrogen production rate under only UV light (&lt;400 nm) was decreased to one-ninth of that obtained using both UV and visible light simultaneously. No hydrogen gas was generated in trials using only visible light (&gt;410 nm). These results indicate that visible light significantly promoted the photocatalytic reaction when both UV and visible light were irradiated simultaneously.</div></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100423"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666086524000286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven hydrogen production technologies are of increasing interest. In this work, Ti3+ was incorporated into titanium dioxide via wet bead-milling, resulting in enhanced photocatalytic activity under both UV and visible light irradiation. The broad optical absorption obtained from the presence of Ti3+ ranged from the visible to near-infrared regions of the spectrum (specifically from 400 to over 900 nm) and this absorption could be enhanced by increasing the diameter of the beads used for wet milling. The hydrogen production rate from water in response to ultraviolet (UV)-visible light with ethanol as a sacrificial reagent was also found to vary depending on the bead diameter. Producing the optimal level of Ti3+ incorporation in the titanium oxide matrix while maintaining a high specific surface area increased the extent of hydrogen production during water decomposition. A sample prepared using 0.3 mm diameter beads exhibited the highest hydrogen production rate of 145 μmol h−1 g−1, which was 15 times that obtained from commercially available anatase-type titanium dioxide having higher specific surface area. The hydrogen production rate under only UV light (<400 nm) was decreased to one-ninth of that obtained using both UV and visible light simultaneously. No hydrogen gas was generated in trials using only visible light (>410 nm). These results indicate that visible light significantly promoted the photocatalytic reaction when both UV and visible light were irradiated simultaneously.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Green and Sustainable Chemistry
Current Research in Green and Sustainable Chemistry Materials Science-Materials Chemistry
CiteScore
11.20
自引率
0.00%
发文量
116
审稿时长
78 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信