{"title":"Reproducing kernel function-based formulation for highly oscillatory integrals","authors":"Sakhi Zaman , Siraj-ul-Islam","doi":"10.1016/j.cam.2025.116507","DOIUrl":null,"url":null,"abstract":"<div><div>Reproducing-kernel functions are effective approximating tools for interpolation of various types of functions regardless of the troublesome sensitivity to shape parameters like that of Radial Basis Functions (RBFs). In the current work, a stable algorithm based on reproducing-kernel functions is proposed for numerical evaluation of oscillatory integrals with or without stationary phase. Reproducing-kernel functions, defined on a real Hilbert space, serve as basis functions in the Levin formulation. The proposed algorithm provides accurate approximation on both uniformly distributed and scattered data points in similar pattern to that of RBFs. High-resolution integration techniques based on wavelets are combined with reproducing kernel functions to evaluate oscillatory integrals with stationary phase. Theoretical error bounds of the new algorithm are derived. Several test cases are included to demonstrate accuracy and efficiency of the proposed algorithm.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"463 ","pages":"Article 116507"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725000226","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Reproducing-kernel functions are effective approximating tools for interpolation of various types of functions regardless of the troublesome sensitivity to shape parameters like that of Radial Basis Functions (RBFs). In the current work, a stable algorithm based on reproducing-kernel functions is proposed for numerical evaluation of oscillatory integrals with or without stationary phase. Reproducing-kernel functions, defined on a real Hilbert space, serve as basis functions in the Levin formulation. The proposed algorithm provides accurate approximation on both uniformly distributed and scattered data points in similar pattern to that of RBFs. High-resolution integration techniques based on wavelets are combined with reproducing kernel functions to evaluate oscillatory integrals with stationary phase. Theoretical error bounds of the new algorithm are derived. Several test cases are included to demonstrate accuracy and efficiency of the proposed algorithm.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.