Ferredoxin NADP+ reductase for NADPH and NADH regeneration in a flow bioelectrochemical reactor

IF 4.8 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Wassim El Housseini , François Lapicque , Alain Walcarius , Elisabeth Lojou , Nicolas Rouhier , Mathieu Etienne
{"title":"Ferredoxin NADP+ reductase for NADPH and NADH regeneration in a flow bioelectrochemical reactor","authors":"Wassim El Housseini ,&nbsp;François Lapicque ,&nbsp;Alain Walcarius ,&nbsp;Elisabeth Lojou ,&nbsp;Nicolas Rouhier ,&nbsp;Mathieu Etienne","doi":"10.1016/j.bioelechem.2025.108919","DOIUrl":null,"url":null,"abstract":"<div><div>Ferredoxin-NADP<sup>+</sup> reductase (FNR) is an efficient and selective biocatalyst to continuously regenerate the NADPH cofactor consumed in biomolecular synthesis for the chemical and pharmaceutical sectors. In this work, FNR from <em>Chlamydomonas reinhardtii</em> was applied to electrochemical regeneration of the nicotinamide cofactors, by combining this enzymatic catalyst in a flow reactor with the oxidation of hydrogen, a clean source of electrons and protons. FNR was immobilized on the surface of oxidized multi-walled carbon nanotubes, which allowed maintaining its activity for over six days under high flow rate. Surprisingly, this modified FNR electrode was effective not only in regenerating NADPH but also NADH. The cofactor regeneration was then applied to the NADH-dependent production of lactate from pyruvate, using L-lactate dehydrogenase (LDH) in the presence of low NAD<sup>+</sup> concentration (10 µM). Both FNR and LDH enzymes were immobilized in the bioelectrochemical system that achieved a remarkable total turnover number (TTN) of 10<sup>4</sup> for the nicotinamide cofactor and a faradaic efficiency higher than 80 %.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"164 ","pages":"Article 108919"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000222","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferredoxin-NADP+ reductase (FNR) is an efficient and selective biocatalyst to continuously regenerate the NADPH cofactor consumed in biomolecular synthesis for the chemical and pharmaceutical sectors. In this work, FNR from Chlamydomonas reinhardtii was applied to electrochemical regeneration of the nicotinamide cofactors, by combining this enzymatic catalyst in a flow reactor with the oxidation of hydrogen, a clean source of electrons and protons. FNR was immobilized on the surface of oxidized multi-walled carbon nanotubes, which allowed maintaining its activity for over six days under high flow rate. Surprisingly, this modified FNR electrode was effective not only in regenerating NADPH but also NADH. The cofactor regeneration was then applied to the NADH-dependent production of lactate from pyruvate, using L-lactate dehydrogenase (LDH) in the presence of low NAD+ concentration (10 µM). Both FNR and LDH enzymes were immobilized in the bioelectrochemical system that achieved a remarkable total turnover number (TTN) of 104 for the nicotinamide cofactor and a faradaic efficiency higher than 80 %.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信