Cyclone negative pressure pump for efficient purification of airborne contaminants

Gihyun Song , Kyungcheol Jang , Woobin Song , Wonchul Choi , Simon Song , Hyoungsoo Kim
{"title":"Cyclone negative pressure pump for efficient purification of airborne contaminants","authors":"Gihyun Song ,&nbsp;Kyungcheol Jang ,&nbsp;Woobin Song ,&nbsp;Wonchul Choi ,&nbsp;Simon Song ,&nbsp;Hyoungsoo Kim","doi":"10.1016/j.indenv.2025.100073","DOIUrl":null,"url":null,"abstract":"<div><div>Maintaining an isolation room with negative pressure is crucial in medical facilities to prevent the spread of airborne infections, especially during the COVID-19 pandemic. However, conventional negative pressure pumps have limitations in gathering suspended particles and controlling the airflow effectively. To resolve this issue, we developed a novel class of negative pressure pump that creates a swirling cyclone flow at the front to efficiently collect pollutants and particles, which was confirmed by a smoke visualization experiment. Based on the prototype pump, we conducted a numerical analysis to evaluate the particle collection performance of the cyclone pump in various scenarios, including patients covered with contaminants, and coughing or breathing. Our results demonstrate that the cyclone pump can purify airborne pollutants by up to 80%, offering superior performance over conventional pumps. We also identified optimal pump placement for effective particle purification. This research provides an innovative solution for improving the efficiency of negative pressure pumps and ventilation systems in medical settings, contributing to better control of airborne infections.</div></div>","PeriodicalId":100665,"journal":{"name":"Indoor Environments","volume":"2 1","pages":"Article 100073"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor Environments","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950362025000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Maintaining an isolation room with negative pressure is crucial in medical facilities to prevent the spread of airborne infections, especially during the COVID-19 pandemic. However, conventional negative pressure pumps have limitations in gathering suspended particles and controlling the airflow effectively. To resolve this issue, we developed a novel class of negative pressure pump that creates a swirling cyclone flow at the front to efficiently collect pollutants and particles, which was confirmed by a smoke visualization experiment. Based on the prototype pump, we conducted a numerical analysis to evaluate the particle collection performance of the cyclone pump in various scenarios, including patients covered with contaminants, and coughing or breathing. Our results demonstrate that the cyclone pump can purify airborne pollutants by up to 80%, offering superior performance over conventional pumps. We also identified optimal pump placement for effective particle purification. This research provides an innovative solution for improving the efficiency of negative pressure pumps and ventilation systems in medical settings, contributing to better control of airborne infections.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信