An efficient and resilience linear prefix approach for mining maximal frequent itemset using clustering

IF 3.4 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
M. Sinthuja , S. Pravinthraja , B K Dhanalakshmi , H L Gururaj , Vinayakumar Ravi , G Jyothish Lal
{"title":"An efficient and resilience linear prefix approach for mining maximal frequent itemset using clustering","authors":"M. Sinthuja ,&nbsp;S. Pravinthraja ,&nbsp;B K Dhanalakshmi ,&nbsp;H L Gururaj ,&nbsp;Vinayakumar Ravi ,&nbsp;G Jyothish Lal","doi":"10.1016/j.jnlssr.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>The numerous volumes of data generated every day necessitate the deployment of new technologies capable of dealing with massive amounts of data efficiently. This is the case with Association Rules, a tool for unsupervised data mining that extracts information in the form of IF-THEN patterns. Although various approaches for extracting frequent itemset (prior step before mining association rules) in extremely large databases have been presented, the high computational cost and shortage of memory remain key issues to be addressed while processing enormous data. The objective of this research is to discover frequent itemset by using clustering for preprocessing and adopting the linear prefix tree algorithm for mining the maximal frequent itemset. The performance of the proposed CL-LP-MAX-tree was evaluated by comparing it with the existing FP-max algorithm. Experimentation was performed with the three different standard datasets to record evidence to prove that the proposed CL-LP-MAX-tree algorithm outperform the existing FP-max algorithm in terms of runtime and memory consumption.</div></div>","PeriodicalId":62710,"journal":{"name":"安全科学与韧性(英文)","volume":"6 1","pages":"Pages 93-104"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"安全科学与韧性(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666449624000689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

The numerous volumes of data generated every day necessitate the deployment of new technologies capable of dealing with massive amounts of data efficiently. This is the case with Association Rules, a tool for unsupervised data mining that extracts information in the form of IF-THEN patterns. Although various approaches for extracting frequent itemset (prior step before mining association rules) in extremely large databases have been presented, the high computational cost and shortage of memory remain key issues to be addressed while processing enormous data. The objective of this research is to discover frequent itemset by using clustering for preprocessing and adopting the linear prefix tree algorithm for mining the maximal frequent itemset. The performance of the proposed CL-LP-MAX-tree was evaluated by comparing it with the existing FP-max algorithm. Experimentation was performed with the three different standard datasets to record evidence to prove that the proposed CL-LP-MAX-tree algorithm outperform the existing FP-max algorithm in terms of runtime and memory consumption.
利用聚类挖掘最大频繁项集的一种高效且具有弹性的线性前缀方法
每天产生的大量数据需要部署能够有效处理大量数据的新技术。Association Rules就是这种情况,Association Rules是一种用于无监督数据挖掘的工具,它以IF-THEN模式的形式提取信息。虽然已经提出了各种方法来提取超大型数据库中的频繁项集(挖掘关联规则之前的步骤),但在处理海量数据时,计算成本高和内存不足仍然是需要解决的关键问题。本研究的目的是通过聚类预处理发现频繁项集,并采用线性前缀树算法挖掘最大频繁项集。通过与现有的FP-max算法进行比较,评价了所提出的CL-LP-MAX-tree算法的性能。在三种不同的标准数据集上进行实验,记录证据,证明所提出的CL-LP-MAX-tree算法在运行时间和内存消耗方面优于现有的FP-max算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
安全科学与韧性(英文)
安全科学与韧性(英文) Management Science and Operations Research, Safety, Risk, Reliability and Quality, Safety Research
CiteScore
8.70
自引率
0.00%
发文量
0
审稿时长
72 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信