An experimental study of fire development under varying ventilation conditions during the depressurization process in pressurized buildings

IF 3.7 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Kaiqiang Wang , Zhigang Shang , Weijun Liu , Kang Wen , Jun Zhang , Bin Yao , Weiguo Song
{"title":"An experimental study of fire development under varying ventilation conditions during the depressurization process in pressurized buildings","authors":"Kaiqiang Wang ,&nbsp;Zhigang Shang ,&nbsp;Weijun Liu ,&nbsp;Kang Wen ,&nbsp;Jun Zhang ,&nbsp;Bin Yao ,&nbsp;Weiguo Song","doi":"10.1016/j.jnlssr.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>Hermetic pressurized buildings are a new type of building in high-altitude areas that efficiently addresses issues such as high-altitude reactions. The indoor pressure is higher than the external pressure under working conditions, and pressure relief must be carried out first during emergencies. The emergency pressure relief process during a fire may lead to complex fire behavior different from that in regular buildings. In this study, we focus on the impact of ventilation conditions and the status of doors in such buildings on fire evolution and smoke plume characteristics through experiments. The temperature variation in the fire room and corridor is measured under different ventilation power, ventilation time, and door opening width conditions. This shows that the width of the door has the greatest impact on fire development. A smaller gap in the door opening restricts air circulation between the interior and exterior of the room, resulting in a rapid decrease in the oxygen concentration within the fire room and a decrease in the combustion reaction rate of wood fires. The ventilation power exerts the most significant influence on the temperature variation in the corridor. These findings provide empirical data and a basis for fire science studies in high-altitude hermetic pressurized buildings and can guide existing fire protection design and management for improved safety.</div></div>","PeriodicalId":62710,"journal":{"name":"安全科学与韧性(英文)","volume":"6 1","pages":"Pages 70-78"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"安全科学与韧性(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666449624000641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Hermetic pressurized buildings are a new type of building in high-altitude areas that efficiently addresses issues such as high-altitude reactions. The indoor pressure is higher than the external pressure under working conditions, and pressure relief must be carried out first during emergencies. The emergency pressure relief process during a fire may lead to complex fire behavior different from that in regular buildings. In this study, we focus on the impact of ventilation conditions and the status of doors in such buildings on fire evolution and smoke plume characteristics through experiments. The temperature variation in the fire room and corridor is measured under different ventilation power, ventilation time, and door opening width conditions. This shows that the width of the door has the greatest impact on fire development. A smaller gap in the door opening restricts air circulation between the interior and exterior of the room, resulting in a rapid decrease in the oxygen concentration within the fire room and a decrease in the combustion reaction rate of wood fires. The ventilation power exerts the most significant influence on the temperature variation in the corridor. These findings provide empirical data and a basis for fire science studies in high-altitude hermetic pressurized buildings and can guide existing fire protection design and management for improved safety.
求助全文
约1分钟内获得全文 求助全文
来源期刊
安全科学与韧性(英文)
安全科学与韧性(英文) Management Science and Operations Research, Safety, Risk, Reliability and Quality, Safety Research
CiteScore
8.70
自引率
0.00%
发文量
0
审稿时长
72 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信