{"title":"Leveraging mathematical models to improve the statistical robustness of cancer immunotherapy trials","authors":"Jeroen H.A. Creemers , Johannes Textor","doi":"10.1016/j.coisb.2024.100540","DOIUrl":null,"url":null,"abstract":"<div><div>Cancer immunotherapy is an important application area for mathematical modeling. Current modeling studies have a range of ambitious goals from dose optimization to creating “digital twins” of individual cancer patients for treatment response prediction. Here we focus on a humbler, but nonetheless important, goal: aiding with the planning and design of clinical trials. Cancer immunotherapy trials can be hard to design due to heterogeneous and time-varying treatment effects. While clinical statisticians already use computer simulations, these rarely integrate explicit pathophysiological mechanisms, such as cancer-immune interactions, to specifically adapt the design to the treatment. Encouraged by rapid progress in mathematical modeling, we here propose an “in-silico-first” approach–already common in industry–where doctors, statisticians, and modelers build knowledge-based mathematical models to examine and refine the statistical design of clinical trials. Ultimately, we hope that this collaborative effort will lead to more robust designs of future clinical trials, resulting in improved success rates.</div></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"40 ","pages":"Article 100540"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310024000362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer immunotherapy is an important application area for mathematical modeling. Current modeling studies have a range of ambitious goals from dose optimization to creating “digital twins” of individual cancer patients for treatment response prediction. Here we focus on a humbler, but nonetheless important, goal: aiding with the planning and design of clinical trials. Cancer immunotherapy trials can be hard to design due to heterogeneous and time-varying treatment effects. While clinical statisticians already use computer simulations, these rarely integrate explicit pathophysiological mechanisms, such as cancer-immune interactions, to specifically adapt the design to the treatment. Encouraged by rapid progress in mathematical modeling, we here propose an “in-silico-first” approach–already common in industry–where doctors, statisticians, and modelers build knowledge-based mathematical models to examine and refine the statistical design of clinical trials. Ultimately, we hope that this collaborative effort will lead to more robust designs of future clinical trials, resulting in improved success rates.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution