Insecticidal activities of essential oil from Hedychium coronarium rhizome and its mixture of compounds against the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae)

IF 4.2 1区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Pachara Vijitkul , Wanchai Pluempanupat , Narisara Piyasaengthong , Vasakorn Bullangpoti
{"title":"Insecticidal activities of essential oil from Hedychium coronarium rhizome and its mixture of compounds against the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae)","authors":"Pachara Vijitkul ,&nbsp;Wanchai Pluempanupat ,&nbsp;Narisara Piyasaengthong ,&nbsp;Vasakorn Bullangpoti","doi":"10.1016/j.pestbp.2025.106293","DOIUrl":null,"url":null,"abstract":"<div><div>The fall armyworm <em>Spodoptera frugiperda</em> (Lepidoptera: Noctuidae) is an insect pest that severely affects agricultural crops worldwide. This species can generally be controlled using synthetic insecticides, but these insecticides can cause several adverse effects. Therefore, many people prefer to utilize plant-based insecticides, especially plant essential oils, as alternatives for managing insect pests. The goal of this study was to examine the insecticidal effects of <em>Hedychium coronarium</em> rhizome essential oil (HCEO) and its major compounds against <em>S. frugiperda</em>. Gas chromatography–mass spectrometry analysis of HCEO identified 1,8-cineole (39.54 %), β-pinene (25.44 %), α-pinene (12.55 %) and limonene (4.68 %) as the major compounds. The assessed LD<sub>50</sub> value for HCEO on <em>S. frugiperda</em> larvae via topical application at 24 h was 8.25 μg/larva. Among the major compounds tested, 1,8-cineole demonstrated the highest toxicity, followed by limonene, β-pinene and α-pinene, with LD<sub>50</sub> values of 12.65, 14.17, 23.97 and 29.12 μg/larva, respectively. Furthermore, all combinations of the four major compounds (1,8-cineole, β-pinene, α-pinene and limonene) exhibited synergistic insecticidal effects on <em>S. frugiperda</em> larvae. Additionally, HCEO and its major compounds had deleterious effects on the growth and development of <em>S. frugiperda</em>. The egg-hatching rate was also reduced. Moreover, <em>S. frugiperda</em> larvae treated with HCEO and 1,8-cineole presented a significant decrease in acetylcholinesterase activity. In summary, our findings suggest that HCEO and its major compounds have effective insecticidal activity for the control of <em>S. frugiperda</em>.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"208 ","pages":"Article 106293"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357525000069","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) is an insect pest that severely affects agricultural crops worldwide. This species can generally be controlled using synthetic insecticides, but these insecticides can cause several adverse effects. Therefore, many people prefer to utilize plant-based insecticides, especially plant essential oils, as alternatives for managing insect pests. The goal of this study was to examine the insecticidal effects of Hedychium coronarium rhizome essential oil (HCEO) and its major compounds against S. frugiperda. Gas chromatography–mass spectrometry analysis of HCEO identified 1,8-cineole (39.54 %), β-pinene (25.44 %), α-pinene (12.55 %) and limonene (4.68 %) as the major compounds. The assessed LD50 value for HCEO on S. frugiperda larvae via topical application at 24 h was 8.25 μg/larva. Among the major compounds tested, 1,8-cineole demonstrated the highest toxicity, followed by limonene, β-pinene and α-pinene, with LD50 values of 12.65, 14.17, 23.97 and 29.12 μg/larva, respectively. Furthermore, all combinations of the four major compounds (1,8-cineole, β-pinene, α-pinene and limonene) exhibited synergistic insecticidal effects on S. frugiperda larvae. Additionally, HCEO and its major compounds had deleterious effects on the growth and development of S. frugiperda. The egg-hatching rate was also reduced. Moreover, S. frugiperda larvae treated with HCEO and 1,8-cineole presented a significant decrease in acetylcholinesterase activity. In summary, our findings suggest that HCEO and its major compounds have effective insecticidal activity for the control of S. frugiperda.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
8.50%
发文量
238
审稿时长
4.2 months
期刊介绍: Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance. Research Areas Emphasized Include the Biochemistry and Physiology of: • Comparative toxicity • Mode of action • Pathophysiology • Plant growth regulators • Resistance • Other effects of pesticides on both parasites and hosts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信