Yi Zhou , Yu Zhang , Changsheng Chen , Lele Li , Danya Xu , Robert C. Beardsley , Weizeng Shao
{"title":"Assessment of radar freeboard, radar penetration rate, and snow depth for potential improvements in Arctic sea ice thickness retrieved from CryoSat-2","authors":"Yi Zhou , Yu Zhang , Changsheng Chen , Lele Li , Danya Xu , Robert C. Beardsley , Weizeng Shao","doi":"10.1016/j.coldregions.2024.104408","DOIUrl":null,"url":null,"abstract":"<div><div>The accuracy of Arctic sea ice thickness retrieved from the CryoSat-2 satellite is significantly influenced by the sea ice surface roughness, snow backscatter, and snow depth. In this study, four updated cases incorporating physical model-based radar freeboard, newly estimated radar penetration rate, and well-validated satellite snow depth were constructed to evaluate their potential improvements to the Alfred Wegener Institute's CryoSat-2 sea ice thickness (AWI CS2). The updated cases were then compared with airborne remotely sensed observations from the National Aeronautics and Space Administration's Operation IceBridge (OIB) and CryoSat Validation Experiment (CryoVEx) in 2013 and 2014, as well as with ground-based observations during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to April 2020. The results showed that all updated cases had the potential to improve the accuracy of sea ice thickness, maintaining comparable correlation coefficients and significantly reducing statistical errors compared to the AWI CS2. In the evaluation with OIB, CryoVEx, and MOSAiC, the four updated cases reduced the root mean square error of AWI CS2 by up to 0.68 m (55 %) against OIB, 0.76 m (53 %) against CryoVEx, and 0.47 m (76 %) against MOSAiC. The updated sea ice thicknesses retained the main distribution patterns generated by AWI CS2, but generally showed thinner sea ice thicknesses. From 2013 to 2018, the interannual variation trends between the updated cases and AWI CS2 varied regionally, but both show significant decreasing trends along the northern coasts of the Canadian Arctic Archipelago and Greenland. The updated schemes provided new insights into the retrieval of sea ice thickness using CryoSat-2, thereby further contributing to the quantification of the sea ice volume in the context of a warming climate.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"231 ","pages":"Article 104408"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24002891","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The accuracy of Arctic sea ice thickness retrieved from the CryoSat-2 satellite is significantly influenced by the sea ice surface roughness, snow backscatter, and snow depth. In this study, four updated cases incorporating physical model-based radar freeboard, newly estimated radar penetration rate, and well-validated satellite snow depth were constructed to evaluate their potential improvements to the Alfred Wegener Institute's CryoSat-2 sea ice thickness (AWI CS2). The updated cases were then compared with airborne remotely sensed observations from the National Aeronautics and Space Administration's Operation IceBridge (OIB) and CryoSat Validation Experiment (CryoVEx) in 2013 and 2014, as well as with ground-based observations during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to April 2020. The results showed that all updated cases had the potential to improve the accuracy of sea ice thickness, maintaining comparable correlation coefficients and significantly reducing statistical errors compared to the AWI CS2. In the evaluation with OIB, CryoVEx, and MOSAiC, the four updated cases reduced the root mean square error of AWI CS2 by up to 0.68 m (55 %) against OIB, 0.76 m (53 %) against CryoVEx, and 0.47 m (76 %) against MOSAiC. The updated sea ice thicknesses retained the main distribution patterns generated by AWI CS2, but generally showed thinner sea ice thicknesses. From 2013 to 2018, the interannual variation trends between the updated cases and AWI CS2 varied regionally, but both show significant decreasing trends along the northern coasts of the Canadian Arctic Archipelago and Greenland. The updated schemes provided new insights into the retrieval of sea ice thickness using CryoSat-2, thereby further contributing to the quantification of the sea ice volume in the context of a warming climate.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.