Laboratory mass spectrometry of intact atmospherically-relevant particles

IF 3.9 3区 环境科学与生态学 Q2 ENGINEERING, CHEMICAL
Annapoorani Hariharan, Christopher J. Johnson
{"title":"Laboratory mass spectrometry of intact atmospherically-relevant particles","authors":"Annapoorani Hariharan,&nbsp;Christopher J. Johnson","doi":"10.1016/j.jaerosci.2024.106502","DOIUrl":null,"url":null,"abstract":"<div><div>The physical and chemical properties of atmospheric aerosols profoundly impact the climate and human health. With diameters from sub-nanometer to tens of microns, a multitude of different experimental techniques suited to specific size ranges must be employed to characterize them. While mass spectrometry can be performed <em>on</em> particles of any size by destroying them and characterizing their molecular and atomic compositions, the masses <em>of</em> atmospheric nanoparticles with sizes below 10 nm can be measured with enough precision to observe discrete changes of their chemical composition while they remain intact. This enables direct study of their structure and reactivity in well-controlled laboratory experiments, complementing ambient field measurements. Here, we review the application of mass spectrometry and unique experiments based on mass spectrometers to measure the composition, stability, structure, and formation mechanisms of aerosol particles. We discuss the instrumentation employed in these experiments, including ion mobility separation, ion trap reactivity, and laser spectroscopy, that are often combined with mass spectrometry, and highlight illustrative examples of these techniques to prototypical atmospheric nanoparticles. We also highlight emerging mass spectrometry techniques that could extend these studies to larger nanoparticles and enable new insights into current unsolved problems involving atmospheric nanoparticles.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"184 ","pages":"Article 106502"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021850224001691","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The physical and chemical properties of atmospheric aerosols profoundly impact the climate and human health. With diameters from sub-nanometer to tens of microns, a multitude of different experimental techniques suited to specific size ranges must be employed to characterize them. While mass spectrometry can be performed on particles of any size by destroying them and characterizing their molecular and atomic compositions, the masses of atmospheric nanoparticles with sizes below 10 nm can be measured with enough precision to observe discrete changes of their chemical composition while they remain intact. This enables direct study of their structure and reactivity in well-controlled laboratory experiments, complementing ambient field measurements. Here, we review the application of mass spectrometry and unique experiments based on mass spectrometers to measure the composition, stability, structure, and formation mechanisms of aerosol particles. We discuss the instrumentation employed in these experiments, including ion mobility separation, ion trap reactivity, and laser spectroscopy, that are often combined with mass spectrometry, and highlight illustrative examples of these techniques to prototypical atmospheric nanoparticles. We also highlight emerging mass spectrometry techniques that could extend these studies to larger nanoparticles and enable new insights into current unsolved problems involving atmospheric nanoparticles.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Aerosol Science
Journal of Aerosol Science 环境科学-工程:化工
CiteScore
8.80
自引率
8.90%
发文量
127
审稿时长
35 days
期刊介绍: Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences. The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics: 1. Fundamental Aerosol Science. 2. Applied Aerosol Science. 3. Instrumentation & Measurement Methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信