Comprehensive reevaluation of acetaldehyde chemistry - part I: Assessment of important kinetic parameters and the underlying uncertainties

IF 5 Q2 ENERGY & FUELS
Xinrui Ren , Hongqing Wu , Ruoyue Tang , Yanqing Cui , Mingrui Wang , Song Cheng
{"title":"Comprehensive reevaluation of acetaldehyde chemistry - part I: Assessment of important kinetic parameters and the underlying uncertainties","authors":"Xinrui Ren ,&nbsp;Hongqing Wu ,&nbsp;Ruoyue Tang ,&nbsp;Yanqing Cui ,&nbsp;Mingrui Wang ,&nbsp;Song Cheng","doi":"10.1016/j.jaecs.2025.100320","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the combustion chemistry of acetaldehyde is crucial to developing robust and accurate combustion chemistry models for practical fuels, especially for biofuels. This study aims to re-evaluate the important rate and thermodynamic parameters for acetaldehyde combustion chemistry and determine the physical uncertainties of these parameters. The rate parameters of 79 key reactions are reevaluated using &gt; 100,000 direct experiments and quantum chemistry computations from &gt; 900 studies, and the thermochemistry (<em>Δh<sub>f</sub></em>(298 K), <em>s<sup>0</sup></em>(298 K) and <em>c<sub>p</sub></em>) of 24 key species are reevaluated based on the ATCT database, the NIST Chemistry WebBook, the TMTD database, and 35 published chemistry models. The updated parameters are incorporated into a recent acetaldehyde chemistry model, which is further assessed against available fundamental experiments measurements (10 RCM-IDT, 123 ST-IDT, 633 JSR-species concentrations, and 102 flow reactor-species concentrations) and existing chemistry models, with clearly better performance obtained in the high-temperature regime. Sensitivity and flux analyses further highlight the insufficiencies of previous models in representing the key pathways, particularly the branching ratios of acetaldehyde- and formaldehyde-consuming pathways. Meanwhile, temperature-dependent and temperature-independent uncertainties are statistically evaluated for kinetic and thermochemical parameters, respectively, where the large differences between the updated and the original model parameters reveal the necessity of reassessment of kinetic and thermochemical parameters completely based on direct experiments and theoretical calculations for rate and thermodynamic parameters. The application of the determined uncertainty domains of the key kinetic and thermodynamic parameters is further demonstrated through a case study, with the modelling uncertainty and its reliability highlighted. With the configured uncertainty domain of the updated acetaldehyde chemistry model, further uncertainty quantification and optimization can be conducted to improve the model performance, which is currently under progress in the authors’ group.</div></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"21 ","pages":"Article 100320"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Energy and Combustion Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666352X25000020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the combustion chemistry of acetaldehyde is crucial to developing robust and accurate combustion chemistry models for practical fuels, especially for biofuels. This study aims to re-evaluate the important rate and thermodynamic parameters for acetaldehyde combustion chemistry and determine the physical uncertainties of these parameters. The rate parameters of 79 key reactions are reevaluated using > 100,000 direct experiments and quantum chemistry computations from > 900 studies, and the thermochemistry (Δhf(298 K), s0(298 K) and cp) of 24 key species are reevaluated based on the ATCT database, the NIST Chemistry WebBook, the TMTD database, and 35 published chemistry models. The updated parameters are incorporated into a recent acetaldehyde chemistry model, which is further assessed against available fundamental experiments measurements (10 RCM-IDT, 123 ST-IDT, 633 JSR-species concentrations, and 102 flow reactor-species concentrations) and existing chemistry models, with clearly better performance obtained in the high-temperature regime. Sensitivity and flux analyses further highlight the insufficiencies of previous models in representing the key pathways, particularly the branching ratios of acetaldehyde- and formaldehyde-consuming pathways. Meanwhile, temperature-dependent and temperature-independent uncertainties are statistically evaluated for kinetic and thermochemical parameters, respectively, where the large differences between the updated and the original model parameters reveal the necessity of reassessment of kinetic and thermochemical parameters completely based on direct experiments and theoretical calculations for rate and thermodynamic parameters. The application of the determined uncertainty domains of the key kinetic and thermodynamic parameters is further demonstrated through a case study, with the modelling uncertainty and its reliability highlighted. With the configured uncertainty domain of the updated acetaldehyde chemistry model, further uncertainty quantification and optimization can be conducted to improve the model performance, which is currently under progress in the authors’ group.
乙醛化学的综合再评价-第一部分:重要动力学参数和潜在不确定性的评估
了解乙醛的燃烧化学对于开发实用燃料,特别是生物燃料的可靠和准确的燃烧化学模型至关重要。本研究旨在重新评估乙醛燃烧化学的重要速率和热力学参数,并确定这些参数的物理不确定度。79个关键反应的速率参数用>重新计算;10万个直接实验和量子化学计算来自>;基于ATCT数据库、NIST化学WebBook、TMTD数据库和35个已发表的化学模型,对900项研究和24个关键物种的热化学(Δhf(298 K), 50 (298 K)和cp)进行了重新评估。更新的参数被纳入最近的乙醛化学模型,该模型根据现有的基础实验测量(10 rrm - idt, 123 ST-IDT, 633 jsr -物种浓度和102流动反应器-物种浓度)和现有的化学模型进行进一步评估,在高温状态下获得了明显更好的性能。敏感性和通量分析进一步强调了先前模型在表示关键途径方面的不足,特别是乙醛和甲醛消耗途径的分支比例。同时,对动力学和热化学参数分别进行了温度相关和温度无关的不确定性统计评估,其中更新后的模型参数与原始模型参数之间存在较大差异,表明有必要完全基于直接实验和速率和热力学参数的理论计算来重新评估动力学和热化学参数。通过实例进一步论证了确定的关键动力学和热力学参数不确定域的应用,突出了建模的不确定性及其可靠性。通过配置更新后的乙醛化学模型的不确定域,可以进行进一步的不确定性量化和优化,以提高模型的性能,这是作者小组目前正在进行的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信