A universal direct tensile testing method for measuring the tensile strength of rocks

IF 11.7 1区 工程技术 Q1 MINING & MINERAL PROCESSING
Yang Wu , Jianfeng Liu , Zhide Wu , Junjie Liu , Yonghui Zhao , Huining Xu , Jinbing Wei , Wen Zhong
{"title":"A universal direct tensile testing method for measuring the tensile strength of rocks","authors":"Yang Wu ,&nbsp;Jianfeng Liu ,&nbsp;Zhide Wu ,&nbsp;Junjie Liu ,&nbsp;Yonghui Zhao ,&nbsp;Huining Xu ,&nbsp;Jinbing Wei ,&nbsp;Wen Zhong","doi":"10.1016/j.ijmst.2024.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>There is limited applicability to the current method for testing the direct tensile strength of rocks because it places stringent requirements on the testing equipment. This work suggests a universal method based on the “compression-to-tension” idea in response to these difficulties. By applying pressure, this technique makes it possible to test the tensile strength of rocks directly with any conventional compression test machines. Granite was utilized as the test material in order to validate this suggested testing method, and the results showed what follows. Upon determining the true fracture area through digital reconstruction, an average calculated tensile strength of 5.97 MPa with a <em>C</em><sub>v</sub> of 0.04 was obtained. There is a positive correlation between tensile strength and the joint roughness coefficient (JRC) of the failure surface. The aggregation mode of AE events with the loading process conforms to the damage characteristics of rock tensile failure. The direct tensile testing method proposed in this study not only has high universality but also produces test results with outstanding consistency. Additionally, factors influencing the results of the tensile test are pointed out, and recommendations for optimizing the suggested testing method are offered.</div></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 10","pages":"Pages 1443-1451"},"PeriodicalIF":11.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268624001423","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

Abstract

There is limited applicability to the current method for testing the direct tensile strength of rocks because it places stringent requirements on the testing equipment. This work suggests a universal method based on the “compression-to-tension” idea in response to these difficulties. By applying pressure, this technique makes it possible to test the tensile strength of rocks directly with any conventional compression test machines. Granite was utilized as the test material in order to validate this suggested testing method, and the results showed what follows. Upon determining the true fracture area through digital reconstruction, an average calculated tensile strength of 5.97 MPa with a Cv of 0.04 was obtained. There is a positive correlation between tensile strength and the joint roughness coefficient (JRC) of the failure surface. The aggregation mode of AE events with the loading process conforms to the damage characteristics of rock tensile failure. The direct tensile testing method proposed in this study not only has high universality but also produces test results with outstanding consistency. Additionally, factors influencing the results of the tensile test are pointed out, and recommendations for optimizing the suggested testing method are offered.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mining Science and Technology
International Journal of Mining Science and Technology Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
19.10
自引率
11.90%
发文量
2541
审稿时长
44 days
期刊介绍: The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信