Felix Agner , Ulrich Trabert , Anders Rantzer , Janybek Orozaliev
{"title":"A data-based comparison of methods for reducing the peak flow rate in a district heating system","authors":"Felix Agner , Ulrich Trabert , Anders Rantzer , Janybek Orozaliev","doi":"10.1016/j.segy.2024.100168","DOIUrl":null,"url":null,"abstract":"<div><div>This work concerns reduction of the peak flow rate of a district heating grid, a key system property which is bounded by pipe dimensions and pumping capacity. The peak flow rate constrains the number of additional consumers that can be connected, and may be a limiting factor in reducing supply temperatures when transitioning to the 4th generation of district heating. We evaluate a full year of operational data from a subset of customer meters in a district heating system in Germany. We consider the peak flow rate reduction that could be achieved with full a posteriori knowledge of this data. Three strategies for reducing the peak flow rate are investigated: A load shifting demand response strategy, an upper limitation in substation return temperatures, and an upper limitation on each substation’s volume flow rate. We show that imposing up to 18 % load flexibility for the customers provides an equal reduction in the peak system flow rate under the load shifting strategy. The limited return temperature strategy is less efficient at curtailing the peak flow rate, but provides an overall reduction of volume flow rates. Finally, the flow rate limitation method can introduce new, higher flow rate peaks, reducing performance.</div></div>","PeriodicalId":34738,"journal":{"name":"Smart Energy","volume":"17 ","pages":"Article 100168"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666955224000388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This work concerns reduction of the peak flow rate of a district heating grid, a key system property which is bounded by pipe dimensions and pumping capacity. The peak flow rate constrains the number of additional consumers that can be connected, and may be a limiting factor in reducing supply temperatures when transitioning to the 4th generation of district heating. We evaluate a full year of operational data from a subset of customer meters in a district heating system in Germany. We consider the peak flow rate reduction that could be achieved with full a posteriori knowledge of this data. Three strategies for reducing the peak flow rate are investigated: A load shifting demand response strategy, an upper limitation in substation return temperatures, and an upper limitation on each substation’s volume flow rate. We show that imposing up to 18 % load flexibility for the customers provides an equal reduction in the peak system flow rate under the load shifting strategy. The limited return temperature strategy is less efficient at curtailing the peak flow rate, but provides an overall reduction of volume flow rates. Finally, the flow rate limitation method can introduce new, higher flow rate peaks, reducing performance.