Flame-retardant effects of NH2-MIL-53(Al) in combination with phosphorus-containing and nitrogen-containing flame retardants on polypropylene

IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL
Liang Yu , Lv Shen , Hongzhe Zhong , Ru Zhou , Min Hao , Juncheng Jiang
{"title":"Flame-retardant effects of NH2-MIL-53(Al) in combination with phosphorus-containing and nitrogen-containing flame retardants on polypropylene","authors":"Liang Yu ,&nbsp;Lv Shen ,&nbsp;Hongzhe Zhong ,&nbsp;Ru Zhou ,&nbsp;Min Hao ,&nbsp;Juncheng Jiang","doi":"10.1016/j.tca.2024.179913","DOIUrl":null,"url":null,"abstract":"<div><div>Polypropylene (PP) flammability poses great fire risks for its application. A metal-organic framework (MOF), NH<sub>2</sub>-MIL-53(Al), was synthesized and subsequently integrated into PP, the flame-retardant efficacy in conjunction with piperazine pyrophosphate (PAPP) and melamine cyanurate (MCA) was additionally examined. When the total mass fraction of the additives was 25 %, the limiting oxygen index (LOI) of PP composite reached 31.1 %, it also passed the UL-94 test with a V-0 rating. The peak heat release rate (pHRR) and the total heat release rate (THR) was reduced by 88.55 % and 79.75 %, respectively, compared with the pure PP. The char residual char percentage increased to 8.02 %. The Tensile Strength reached 30.1 MPa. The results indicate that adding NH<sub>2</sub>-MIL-53(Al) significantly enhanced the flame retardancy and thermal stability of PP composites, without significantly affecting their mechanical properties, which offers a novel potential direction for the advancement of polymer flame retardants (FRs).</div></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"743 ","pages":"Article 179913"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040603124002521","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polypropylene (PP) flammability poses great fire risks for its application. A metal-organic framework (MOF), NH2-MIL-53(Al), was synthesized and subsequently integrated into PP, the flame-retardant efficacy in conjunction with piperazine pyrophosphate (PAPP) and melamine cyanurate (MCA) was additionally examined. When the total mass fraction of the additives was 25 %, the limiting oxygen index (LOI) of PP composite reached 31.1 %, it also passed the UL-94 test with a V-0 rating. The peak heat release rate (pHRR) and the total heat release rate (THR) was reduced by 88.55 % and 79.75 %, respectively, compared with the pure PP. The char residual char percentage increased to 8.02 %. The Tensile Strength reached 30.1 MPa. The results indicate that adding NH2-MIL-53(Al) significantly enhanced the flame retardancy and thermal stability of PP composites, without significantly affecting their mechanical properties, which offers a novel potential direction for the advancement of polymer flame retardants (FRs).
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thermochimica Acta
Thermochimica Acta 化学-分析化学
CiteScore
6.50
自引率
8.60%
发文量
210
审稿时长
40 days
期刊介绍: Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application. The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta. The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas: - New and improved instrumentation and methods - Thermal properties and behavior of materials - Kinetics of thermally stimulated processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信