{"title":"Dynamics of pop-tsack torsing","authors":"Anqi Li","doi":"10.1016/j.aam.2024.102826","DOIUrl":null,"url":null,"abstract":"<div><div>For a finite irreducible Coxeter group <span><math><mo>(</mo><mi>W</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span> with a fixed Coxeter element <em>c</em> and set of reflections <em>T</em>, Defant and Williams define a pop-tsack torsing operation <span><math><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow><mo>:</mo><mi>W</mi><mo>→</mo><mi>W</mi></math></span> given by <span><math><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow><mo>(</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>w</mi><mo>⋅</mo><mi>π</mi><msup><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> where <span><math><mi>π</mi><mo>(</mo><mi>w</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>⋁</mo></mrow><mrow><mi>t</mi><msub><mrow><mo>≤</mo></mrow><mrow><mi>T</mi></mrow></msub><mi>w</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>∈</mo><mi>T</mi></mrow><mrow><mi>N</mi><mi>C</mi><mo>(</mo><mi>w</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></msubsup><mi>t</mi></math></span> is the join of all reflections lying below <em>w</em> in the absolute order in the non-crossing partition lattice <span><math><mi>N</mi><mi>C</mi><mo>(</mo><mi>w</mi><mo>,</mo><mi>c</mi><mo>)</mo></math></span>. This is a “dual” notion of the pop-stack sorting operator <span><math><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></math></span>; <span><math><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></math></span> was introduced by Defant as a way to generalize the pop-stack sorting operator on <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> to general Coxeter groups. Define the forward orbit of an element <span><math><mi>w</mi><mo>∈</mo><mi>W</mi></math></span> to be <span><math><msub><mrow><mi>O</mi></mrow><mrow><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow></mrow></msub><mo>(</mo><mi>w</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>w</mi><mo>,</mo><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow><mo>(</mo><mi>w</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>w</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>}</mo></math></span>. Defant and Williams established the length of the longest possible forward orbits <span><math><msub><mrow><mi>max</mi></mrow><mrow><mi>w</mi><mo>∈</mo><mi>W</mi></mrow></msub><mo></mo><mo>|</mo><msub><mrow><mi>O</mi></mrow><mrow><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow></mrow></msub><mo>(</mo><mi>w</mi><mo>)</mo><mo>|</mo></math></span> for Coxeter groups of coincidental types and Type D in terms of the corresponding Coxeter number of the group. In their paper, they also proposed multiple conjectures about enumerating elements with near maximal orbit length. We resolve all the conjectures that they have put forth about enumeration, and in the process we give complete classifications of these elements of Coxeter groups of types A, B and D with near maximal orbit lengths.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"164 ","pages":"Article 102826"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001581","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For a finite irreducible Coxeter group with a fixed Coxeter element c and set of reflections T, Defant and Williams define a pop-tsack torsing operation given by where is the join of all reflections lying below w in the absolute order in the non-crossing partition lattice . This is a “dual” notion of the pop-stack sorting operator ; was introduced by Defant as a way to generalize the pop-stack sorting operator on to general Coxeter groups. Define the forward orbit of an element to be . Defant and Williams established the length of the longest possible forward orbits for Coxeter groups of coincidental types and Type D in terms of the corresponding Coxeter number of the group. In their paper, they also proposed multiple conjectures about enumerating elements with near maximal orbit length. We resolve all the conjectures that they have put forth about enumeration, and in the process we give complete classifications of these elements of Coxeter groups of types A, B and D with near maximal orbit lengths.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.