{"title":"Conditions for virtually Cohen–Macaulay simplicial complexes","authors":"Adam Van Tuyl , Jay Yang","doi":"10.1016/j.aam.2024.102830","DOIUrl":null,"url":null,"abstract":"<div><div>A simplicial complex Δ is a virtually Cohen–Macaulay simplicial complex if its associated Stanley-Reisner ring <em>S</em> has a virtual resolution, as defined by Berkesch, Erman, and Smith, of length <span><math><mrow><mi>codim</mi></mrow><mo>(</mo><mi>S</mi><mo>)</mo></math></span>. We provide a sufficient condition on Δ to be a virtually Cohen–Macaulay simplicial complex. We also introduce virtually shellable simplicial complexes, a generalization of shellable simplicial complexes. Virtually shellable complexes have the property that they are virtually Cohen–Macaulay, generalizing the well-known fact that shellable simplicial complexes are Cohen–Macaulay.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"164 ","pages":"Article 102830"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001623","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A simplicial complex Δ is a virtually Cohen–Macaulay simplicial complex if its associated Stanley-Reisner ring S has a virtual resolution, as defined by Berkesch, Erman, and Smith, of length . We provide a sufficient condition on Δ to be a virtually Cohen–Macaulay simplicial complex. We also introduce virtually shellable simplicial complexes, a generalization of shellable simplicial complexes. Virtually shellable complexes have the property that they are virtually Cohen–Macaulay, generalizing the well-known fact that shellable simplicial complexes are Cohen–Macaulay.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.