Enhanced As(III) adsorption-oxidation via synergistic interactions between bacteria and goethite

Jie Deng , Shaowei Mi , Chenchen Qu, Qiaoyun Huang, Xionghan Feng, Xiaoming Wang
{"title":"Enhanced As(III) adsorption-oxidation via synergistic interactions between bacteria and goethite","authors":"Jie Deng ,&nbsp;Shaowei Mi ,&nbsp;Chenchen Qu,&nbsp;Qiaoyun Huang,&nbsp;Xionghan Feng,&nbsp;Xiaoming Wang","doi":"10.1016/j.eehl.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>The adsorption and oxidation of arsenite [As(III)] by soil components are critical processes that influence its toxicity and mobility. However, the specific mechanisms driving the synergistic interactions among bacteria, soil minerals, and humic acid (HA) in these processes remain insufficiently understood. This study investigated the effects of goethite and HA association on As(III) adsorption-oxidation by the As(III)-oxidizing bacterium SY8 using batch incubation experiments and spectroscopic analyses. The results indicated that goethite inhibited the growth of SY8, but its binary and ternary composites with HA and SY8 substantially enhanced the adsorption and oxidation of As(III) compared to SY8 alone. This enhancement could be attributed to the generation of hydroxyl radicals (·OH) through Fenton-like reactions that contribute to the enhanced oxidation of As(III). The Fenton-like reactions involved interactions between H<sub>2</sub>O<sub>2</sub> and goethite, as well as the activation of molecular O<sub>2</sub> by structural Fe(II). Furthermore, the proportion of As(V) associated with the solids was lower than that in the solution, suggesting that As(III) oxidation by SY8 was potentially inhibited by As(III) adsorption on goethite. Additionally, HA did not affect SY8 growth or its As(III) oxidation capability, but slightly enhanced As adsorption on the composites. These findings reveal a complex interplay among microbial, mineral, and organic matter interactions. Understanding these interactions is essential for elucidating soil As biogeochemical processes and developing effective remediation strategies for As-contaminated environments.</div></div>","PeriodicalId":29813,"journal":{"name":"Eco-Environment & Health","volume":"4 1","pages":"Article 100131"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eco-Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772985024000735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The adsorption and oxidation of arsenite [As(III)] by soil components are critical processes that influence its toxicity and mobility. However, the specific mechanisms driving the synergistic interactions among bacteria, soil minerals, and humic acid (HA) in these processes remain insufficiently understood. This study investigated the effects of goethite and HA association on As(III) adsorption-oxidation by the As(III)-oxidizing bacterium SY8 using batch incubation experiments and spectroscopic analyses. The results indicated that goethite inhibited the growth of SY8, but its binary and ternary composites with HA and SY8 substantially enhanced the adsorption and oxidation of As(III) compared to SY8 alone. This enhancement could be attributed to the generation of hydroxyl radicals (·OH) through Fenton-like reactions that contribute to the enhanced oxidation of As(III). The Fenton-like reactions involved interactions between H2O2 and goethite, as well as the activation of molecular O2 by structural Fe(II). Furthermore, the proportion of As(V) associated with the solids was lower than that in the solution, suggesting that As(III) oxidation by SY8 was potentially inhibited by As(III) adsorption on goethite. Additionally, HA did not affect SY8 growth or its As(III) oxidation capability, but slightly enhanced As adsorption on the composites. These findings reveal a complex interplay among microbial, mineral, and organic matter interactions. Understanding these interactions is essential for elucidating soil As biogeochemical processes and developing effective remediation strategies for As-contaminated environments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Eco-Environment & Health
Eco-Environment & Health 环境科学与生态学-生态、环境与健康
CiteScore
11.00
自引率
0.00%
发文量
18
审稿时长
22 days
期刊介绍: Eco-Environment & Health (EEH) is an international and multidisciplinary peer-reviewed journal designed for publications on the frontiers of the ecology, environment and health as well as their related disciplines. EEH focuses on the concept of “One Health” to promote green and sustainable development, dealing with the interactions among ecology, environment and health, and the underlying mechanisms and interventions. Our mission is to be one of the most important flagship journals in the field of environmental health. Scopes EEH covers a variety of research areas, including but not limited to ecology and biodiversity conservation, environmental behaviors and bioprocesses of emerging contaminants, human exposure and health effects, and evaluation, management and regulation of environmental risks. The key topics of EEH include: 1) Ecology and Biodiversity Conservation Biodiversity Ecological restoration Ecological safety Protected area 2) Environmental and Biological Fate of Emerging Contaminants Environmental behaviors Environmental processes Environmental microbiology 3) Human Exposure and Health Effects Environmental toxicology Environmental epidemiology Environmental health risk Food safety 4) Evaluation, Management and Regulation of Environmental Risks Chemical safety Environmental policy Health policy Health economics Environmental remediation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信