{"title":"Nb and Ta co-substitution in Bi0.5Sr0.5FeO3−δ cathodes for IT-SOFCs: Performance insights","authors":"Isha Bhasin , Gitesh I. Choudhari , Vicky Dhongde , Suddhasatwa Basu , R.S. Gedam , Oroosa Subohi","doi":"10.1016/j.ijhydene.2025.01.456","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the development of advanced cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs) through the co-substitution of niobium <em>(</em><span><math><mrow><msup><mrow><mi>N</mi><mi>b</mi></mrow><mrow><mo>+</mo><mn>5</mn></mrow></msup><mo>)</mo></mrow></math></span> and tantalum (<span><math><mrow><msup><mrow><mi>T</mi><mi>a</mi></mrow><mrow><mo>+</mo><mn>5</mn></mrow></msup></mrow></math></span>) at the B site in the <span><math><mrow><msub><mrow><mi>B</mi><mi>i</mi></mrow><mn>0.5</mn></msub><msub><mrow><mi>S</mi><mi>r</mi></mrow><mn>0.5</mn></msub><mi>F</mi><mi>e</mi><msub><mi>O</mi><mrow><mn>3</mn><mo>−</mo><mi>δ</mi></mrow></msub></mrow></math></span> perovskite structure. Both <span><math><mrow><msup><mrow><mi>N</mi><mi>b</mi></mrow><mrow><mo>+</mo><mn>5</mn></mrow></msup></mrow></math></span> and <span><math><mrow><msup><mrow><mi>T</mi><mi>a</mi></mrow><mrow><mo>+</mo><mn>5</mn></mrow></msup></mrow></math></span> were selected for their identical ionic radii and stable high valence state, which contribute to structural stability, while difference in electronegativity enhances oxidation reduction reaction (ORR) kinetics. The materials were synthesized via a solid-state reaction route. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses confirmed the formation of a pure cubic phase and high-concentration vacancy in <span><math><mrow><msub><mrow><mi>B</mi><mi>i</mi></mrow><mn>0.5</mn></msub><msub><mrow><mi>S</mi><mi>r</mi></mrow><mn>0.5</mn></msub><msub><mrow><mi>F</mi><mi>e</mi></mrow><mn>0.8</mn></msub><msub><mrow><mi>N</mi><mi>b</mi></mrow><mn>0.1</mn></msub><msub><mrow><mi>T</mi><mi>a</mi></mrow><mn>0.1</mn></msub><msub><mi>O</mi><mrow><mn>3</mn><mo>−</mo><mi>δ</mi></mrow></msub><mrow><mo>(</mo><mrow><mi>B</mi><mi>i</mi><mi>S</mi><mi>F</mi><mi>N</mi><mn>10</mn><mi>T</mi><mn>10</mn></mrow><mo>)</mo></mrow></mrow></math></span>. Branauer-Emitter-Teller (BET) surface area analysis indicated that <span><math><mrow><mi>B</mi><mi>i</mi><mi>S</mi><mi>F</mi><mi>N</mi><mn>10</mn><mi>T</mi><mn>10</mn></mrow></math></span> exhibited highest surface area, enhancing oxygen absorption. Scanning electron microscopy (SEM) revealed excellent adhesion between the cathode, anode and electrolyte materials. The symmetrical cell demonstrated low polarization resistance at <span><math><mrow><mn>700</mn><mspace></mspace><mo>˚</mo><mi>C</mi></mrow></math></span>, indicating superior electrochemical performance. A single anode-supported cell achieved a peak power density of <span><math><mrow><mn>590</mn><mfrac><mrow><mi>m</mi><mi>W</mi></mrow><msup><mrow><mi>c</mi><mi>m</mi></mrow><mn>2</mn></msup></mfrac></mrow></math></span> and the current density <span><math><mrow><mn>600</mn><mfrac><mrow><mi>m</mi><mi>A</mi></mrow><msup><mrow><mi>c</mi><mi>m</mi></mrow><mn>2</mn></msup></mfrac></mrow></math></span> with <span><math><mrow><mn>10</mn><mspace></mspace><mi>m</mi><mi>o</mi><mi>l</mi><mo>%</mo></mrow></math></span> of <span><math><mrow><mi>N</mi><mi>b</mi></mrow></math></span> and <span><math><mrow><mi>T</mi><mi>a</mi></mrow></math></span> co-substitution in the <span><math><mrow><msub><mrow><mi>B</mi><mi>i</mi></mrow><mn>0.5</mn></msub><msub><mrow><mi>S</mi><mi>r</mi></mrow><mn>0.5</mn></msub><mi>F</mi><mi>e</mi><msub><mi>O</mi><mrow><mn>3</mn><mo>−</mo><mi>δ</mi></mrow></msub></mrow></math></span> under dry <span><math><mrow><msub><mi>H</mi><mn>2</mn></msub><mtext>.</mtext></mrow></math></span> Surpassing the performance of individually substituted <span><math><mrow><msub><mrow><mi>B</mi><mi>i</mi></mrow><mn>0.5</mn></msub><msub><mrow><mi>S</mi><mi>r</mi></mrow><mn>0.5</mn></msub><msub><mrow><mi>F</mi><mi>e</mi></mrow><mn>0.8</mn></msub><msub><mrow><mi>N</mi><mi>b</mi></mrow><mn>0.1</mn></msub><msub><mi>O</mi><mrow><mn>3</mn><mo>−</mo><mi>δ</mi></mrow></msub><mrow><mo>(</mo><mrow><mi>B</mi><mi>i</mi><mi>S</mi><mi>F</mi><mi>N</mi></mrow><mn>10</mn><mo>)</mo></mrow></mrow></math></span>.and <span><math><mrow><msub><mrow><mi>B</mi><mi>i</mi></mrow><mn>0.5</mn></msub><msub><mrow><mi>S</mi><mi>r</mi></mrow><mn>0.5</mn></msub><msub><mrow><mi>F</mi><mi>e</mi></mrow><mn>0.8</mn></msub><msub><mrow><mi>T</mi><mi>a</mi></mrow><mn>0.1</mn></msub><msub><mi>O</mi><mrow><mn>3</mn><mo>−</mo><mi>δ</mi></mrow></msub><mrow><mo>(</mo><mrow><mi>B</mi><mi>i</mi><mi>S</mi><mi>F</mi><mi>T</mi><mn>10</mn></mrow><mo>)</mo></mrow></mrow></math></span> materials. Furthermore, the Distribution of Relaxation Time (DRT) analysis provides detailed insight into the electrochemical process across various frequencies. These findings highlight the potential of <span><math><mrow><mi>B</mi><mi>i</mi><mi>S</mi><mi>F</mi><mi>N</mi><mn>10</mn><mi>T</mi><mn>10</mn></mrow></math></span> as a high-efficiency cathode material for SOFCs applications, promising a significant advancement in energy conversion technologies.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"106 ","pages":"Pages 261-273"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925005014","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the development of advanced cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs) through the co-substitution of niobium ( and tantalum () at the B site in the perovskite structure. Both and were selected for their identical ionic radii and stable high valence state, which contribute to structural stability, while difference in electronegativity enhances oxidation reduction reaction (ORR) kinetics. The materials were synthesized via a solid-state reaction route. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses confirmed the formation of a pure cubic phase and high-concentration vacancy in . Branauer-Emitter-Teller (BET) surface area analysis indicated that exhibited highest surface area, enhancing oxygen absorption. Scanning electron microscopy (SEM) revealed excellent adhesion between the cathode, anode and electrolyte materials. The symmetrical cell demonstrated low polarization resistance at , indicating superior electrochemical performance. A single anode-supported cell achieved a peak power density of and the current density with of and co-substitution in the under dry Surpassing the performance of individually substituted .and materials. Furthermore, the Distribution of Relaxation Time (DRT) analysis provides detailed insight into the electrochemical process across various frequencies. These findings highlight the potential of as a high-efficiency cathode material for SOFCs applications, promising a significant advancement in energy conversion technologies.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.