Nb and Ta co-substitution in Bi0.5Sr0.5FeO3−δ cathodes for IT-SOFCs: Performance insights

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Isha Bhasin , Gitesh I. Choudhari , Vicky Dhongde , Suddhasatwa Basu , R.S. Gedam , Oroosa Subohi
{"title":"Nb and Ta co-substitution in Bi0.5Sr0.5FeO3−δ cathodes for IT-SOFCs: Performance insights","authors":"Isha Bhasin ,&nbsp;Gitesh I. Choudhari ,&nbsp;Vicky Dhongde ,&nbsp;Suddhasatwa Basu ,&nbsp;R.S. Gedam ,&nbsp;Oroosa Subohi","doi":"10.1016/j.ijhydene.2025.01.456","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the development of advanced cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs) through the co-substitution of niobium <em>(</em><span><math><mrow><msup><mrow><mi>N</mi><mi>b</mi></mrow><mrow><mo>+</mo><mn>5</mn></mrow></msup><mo>)</mo></mrow></math></span> and tantalum (<span><math><mrow><msup><mrow><mi>T</mi><mi>a</mi></mrow><mrow><mo>+</mo><mn>5</mn></mrow></msup></mrow></math></span>) at the B site in the <span><math><mrow><msub><mrow><mi>B</mi><mi>i</mi></mrow><mn>0.5</mn></msub><msub><mrow><mi>S</mi><mi>r</mi></mrow><mn>0.5</mn></msub><mi>F</mi><mi>e</mi><msub><mi>O</mi><mrow><mn>3</mn><mo>−</mo><mi>δ</mi></mrow></msub></mrow></math></span> perovskite structure. Both <span><math><mrow><msup><mrow><mi>N</mi><mi>b</mi></mrow><mrow><mo>+</mo><mn>5</mn></mrow></msup></mrow></math></span> and <span><math><mrow><msup><mrow><mi>T</mi><mi>a</mi></mrow><mrow><mo>+</mo><mn>5</mn></mrow></msup></mrow></math></span> were selected for their identical ionic radii and stable high valence state, which contribute to structural stability, while difference in electronegativity enhances oxidation reduction reaction (ORR) kinetics. The materials were synthesized via a solid-state reaction route. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses confirmed the formation of a pure cubic phase and high-concentration vacancy in <span><math><mrow><msub><mrow><mi>B</mi><mi>i</mi></mrow><mn>0.5</mn></msub><msub><mrow><mi>S</mi><mi>r</mi></mrow><mn>0.5</mn></msub><msub><mrow><mi>F</mi><mi>e</mi></mrow><mn>0.8</mn></msub><msub><mrow><mi>N</mi><mi>b</mi></mrow><mn>0.1</mn></msub><msub><mrow><mi>T</mi><mi>a</mi></mrow><mn>0.1</mn></msub><msub><mi>O</mi><mrow><mn>3</mn><mo>−</mo><mi>δ</mi></mrow></msub><mrow><mo>(</mo><mrow><mi>B</mi><mi>i</mi><mi>S</mi><mi>F</mi><mi>N</mi><mn>10</mn><mi>T</mi><mn>10</mn></mrow><mo>)</mo></mrow></mrow></math></span>. Branauer-Emitter-Teller (BET) surface area analysis indicated that <span><math><mrow><mi>B</mi><mi>i</mi><mi>S</mi><mi>F</mi><mi>N</mi><mn>10</mn><mi>T</mi><mn>10</mn></mrow></math></span> exhibited highest surface area, enhancing oxygen absorption. Scanning electron microscopy (SEM) revealed excellent adhesion between the cathode, anode and electrolyte materials. The symmetrical cell demonstrated low polarization resistance at <span><math><mrow><mn>700</mn><mspace></mspace><mo>˚</mo><mi>C</mi></mrow></math></span>, indicating superior electrochemical performance. A single anode-supported cell achieved a peak power density of <span><math><mrow><mn>590</mn><mfrac><mrow><mi>m</mi><mi>W</mi></mrow><msup><mrow><mi>c</mi><mi>m</mi></mrow><mn>2</mn></msup></mfrac></mrow></math></span> and the current density <span><math><mrow><mn>600</mn><mfrac><mrow><mi>m</mi><mi>A</mi></mrow><msup><mrow><mi>c</mi><mi>m</mi></mrow><mn>2</mn></msup></mfrac></mrow></math></span> with <span><math><mrow><mn>10</mn><mspace></mspace><mi>m</mi><mi>o</mi><mi>l</mi><mo>%</mo></mrow></math></span> of <span><math><mrow><mi>N</mi><mi>b</mi></mrow></math></span> and <span><math><mrow><mi>T</mi><mi>a</mi></mrow></math></span> co-substitution in the <span><math><mrow><msub><mrow><mi>B</mi><mi>i</mi></mrow><mn>0.5</mn></msub><msub><mrow><mi>S</mi><mi>r</mi></mrow><mn>0.5</mn></msub><mi>F</mi><mi>e</mi><msub><mi>O</mi><mrow><mn>3</mn><mo>−</mo><mi>δ</mi></mrow></msub></mrow></math></span> under dry <span><math><mrow><msub><mi>H</mi><mn>2</mn></msub><mtext>.</mtext></mrow></math></span> Surpassing the performance of individually substituted <span><math><mrow><msub><mrow><mi>B</mi><mi>i</mi></mrow><mn>0.5</mn></msub><msub><mrow><mi>S</mi><mi>r</mi></mrow><mn>0.5</mn></msub><msub><mrow><mi>F</mi><mi>e</mi></mrow><mn>0.8</mn></msub><msub><mrow><mi>N</mi><mi>b</mi></mrow><mn>0.1</mn></msub><msub><mi>O</mi><mrow><mn>3</mn><mo>−</mo><mi>δ</mi></mrow></msub><mrow><mo>(</mo><mrow><mi>B</mi><mi>i</mi><mi>S</mi><mi>F</mi><mi>N</mi></mrow><mn>10</mn><mo>)</mo></mrow></mrow></math></span>.and <span><math><mrow><msub><mrow><mi>B</mi><mi>i</mi></mrow><mn>0.5</mn></msub><msub><mrow><mi>S</mi><mi>r</mi></mrow><mn>0.5</mn></msub><msub><mrow><mi>F</mi><mi>e</mi></mrow><mn>0.8</mn></msub><msub><mrow><mi>T</mi><mi>a</mi></mrow><mn>0.1</mn></msub><msub><mi>O</mi><mrow><mn>3</mn><mo>−</mo><mi>δ</mi></mrow></msub><mrow><mo>(</mo><mrow><mi>B</mi><mi>i</mi><mi>S</mi><mi>F</mi><mi>T</mi><mn>10</mn></mrow><mo>)</mo></mrow></mrow></math></span> materials. Furthermore, the Distribution of Relaxation Time (DRT) analysis provides detailed insight into the electrochemical process across various frequencies. These findings highlight the potential of <span><math><mrow><mi>B</mi><mi>i</mi><mi>S</mi><mi>F</mi><mi>N</mi><mn>10</mn><mi>T</mi><mn>10</mn></mrow></math></span> as a high-efficiency cathode material for SOFCs applications, promising a significant advancement in energy conversion technologies.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"106 ","pages":"Pages 261-273"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925005014","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the development of advanced cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs) through the co-substitution of niobium (Nb+5) and tantalum (Ta+5) at the B site in the Bi0.5Sr0.5FeO3δ perovskite structure. Both Nb+5 and Ta+5 were selected for their identical ionic radii and stable high valence state, which contribute to structural stability, while difference in electronegativity enhances oxidation reduction reaction (ORR) kinetics. The materials were synthesized via a solid-state reaction route. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses confirmed the formation of a pure cubic phase and high-concentration vacancy in Bi0.5Sr0.5Fe0.8Nb0.1Ta0.1O3δ(BiSFN10T10). Branauer-Emitter-Teller (BET) surface area analysis indicated that BiSFN10T10 exhibited highest surface area, enhancing oxygen absorption. Scanning electron microscopy (SEM) revealed excellent adhesion between the cathode, anode and electrolyte materials. The symmetrical cell demonstrated low polarization resistance at 700˚C, indicating superior electrochemical performance. A single anode-supported cell achieved a peak power density of 590mWcm2 and the current density 600mAcm2 with 10mol% of Nb and Ta co-substitution in the Bi0.5Sr0.5FeO3δ under dry H2. Surpassing the performance of individually substituted Bi0.5Sr0.5Fe0.8Nb0.1O3δ(BiSFN10).and Bi0.5Sr0.5Fe0.8Ta0.1O3δ(BiSFT10) materials. Furthermore, the Distribution of Relaxation Time (DRT) analysis provides detailed insight into the electrochemical process across various frequencies. These findings highlight the potential of BiSFN10T10 as a high-efficiency cathode material for SOFCs applications, promising a significant advancement in energy conversion technologies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信