Optical dual gas sensor for biomedical monitoring of NO and O2 based on electrospun fibers containing CsPbBr3 QDs and PtTFPP

Q3 Physics and Astronomy
Rispandi , Cheng-Shane Chu , Sri Nugroho , Muhammad Imam Ammarullah
{"title":"Optical dual gas sensor for biomedical monitoring of NO and O2 based on electrospun fibers containing CsPbBr3 QDs and PtTFPP","authors":"Rispandi ,&nbsp;Cheng-Shane Chu ,&nbsp;Sri Nugroho ,&nbsp;Muhammad Imam Ammarullah","doi":"10.1016/j.rio.2025.100781","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the design and development of an innovative optical dual gas sensor tailored for biomedical applications, enabling the simultaneous detection of nitric oxide (NO) and oxygen (O<sub>2</sub>), critical biomarkers in physiological monitoring. The sensor leverages electrospun fibers embedded with CsPbBr<sub>3</sub> quantum dots (QDs) and platinum(II) <em>meso</em>-tetrakis(pentafluorophenyl) porphyrin (PtTFPP), offering a novel approach to enhancing gas-sensing capabilities. Electrospinning produces highly porous, uniform cellulose acetate fibers under optimized conditions (5 mL/hour flow rate, 17 kV supply voltage, 15 cm working distance), creating a biocompatible matrix that enhances sensor stability and responsiveness. The sensor is excited by a UV LED light source at 380 nm, with fluorescence intensities measured via spectrometry. It demonstrates excellent sensitivity, with maximum sensitivities of 4.2 for nitric oxide and 7.6 for oxygen, and rapid response/recovery times of 90 s/119 s for nitric oxide and 61 s/66 s for oxygen, respectively. These findings highlight the sensor’s potential for high-sensitivity, selective, and fast-response gas detection, making it a promising tool for real-time monitoring of respiratory gases and other biomedical applications.</div></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":"18 ","pages":"Article 100781"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666950125000094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the design and development of an innovative optical dual gas sensor tailored for biomedical applications, enabling the simultaneous detection of nitric oxide (NO) and oxygen (O2), critical biomarkers in physiological monitoring. The sensor leverages electrospun fibers embedded with CsPbBr3 quantum dots (QDs) and platinum(II) meso-tetrakis(pentafluorophenyl) porphyrin (PtTFPP), offering a novel approach to enhancing gas-sensing capabilities. Electrospinning produces highly porous, uniform cellulose acetate fibers under optimized conditions (5 mL/hour flow rate, 17 kV supply voltage, 15 cm working distance), creating a biocompatible matrix that enhances sensor stability and responsiveness. The sensor is excited by a UV LED light source at 380 nm, with fluorescence intensities measured via spectrometry. It demonstrates excellent sensitivity, with maximum sensitivities of 4.2 for nitric oxide and 7.6 for oxygen, and rapid response/recovery times of 90 s/119 s for nitric oxide and 61 s/66 s for oxygen, respectively. These findings highlight the sensor’s potential for high-sensitivity, selective, and fast-response gas detection, making it a promising tool for real-time monitoring of respiratory gases and other biomedical applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Optics
Results in Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
2.50
自引率
0.00%
发文量
115
审稿时长
71 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信