Quantification of the impact of irradiance, heat, humidity, and cyclic temperature on the aging of photovoltaic panels: a case study in Algeria

IF 4.7 3区 工程技术 Q2 ENERGY & FUELS
Meriem Farou , Abdelhak Djellad , Sofiane Chiheb , Hala Lalaymia , Badri Rekik , Pierre-Olivier Logerais
{"title":"Quantification of the impact of irradiance, heat, humidity, and cyclic temperature on the aging of photovoltaic panels: a case study in Algeria","authors":"Meriem Farou ,&nbsp;Abdelhak Djellad ,&nbsp;Sofiane Chiheb ,&nbsp;Hala Lalaymia ,&nbsp;Badri Rekik ,&nbsp;Pierre-Olivier Logerais","doi":"10.1016/j.egyr.2024.12.025","DOIUrl":null,"url":null,"abstract":"<div><div>Photovoltaic (PV) aging refers to the inevitable decline in the efficiency of solar modules over time due to various environmental factors. The main elements contributing to this degradation include irradiance, heat, humidity, and cyclic temperature. This paper details the accelerated factors (AFs) calculated from a series of developed equations established to quantify the deterioration mechanisms affecting PV panels. These equations are derived from several models: the Arrhenius model for temperature and irradiance, the Eyring and Peck models for humidity, and the Coffin-Manson model for cyclic temperature. After formulating equations that measure the combined effects of temperature, irradiance, humidity, and cyclic temperature, these equations were employed to analyze the deterioration of the PV panels installed at the Oued El Keberit solar plant in Souk Ahras, Algeria. The investigation revealed that humidity significantly affected the panels during the winter season. In spring, both humidity and irradiance become important factors. During the summer, temperature greatly influences degradation, while lower humidity levels do not significantly affect the panels. In autumn, humidity continues to be a critical factor. According to the obtained results, the highest AF values occur during the summer months, while the lowest AF values are observed in winter. As a result, the PV panels would deteriorate more noticeably during the winter season than in the summer time.</div></div>","PeriodicalId":11798,"journal":{"name":"Energy Reports","volume":"13 ","pages":"Pages 642-652"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352484724008369","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Photovoltaic (PV) aging refers to the inevitable decline in the efficiency of solar modules over time due to various environmental factors. The main elements contributing to this degradation include irradiance, heat, humidity, and cyclic temperature. This paper details the accelerated factors (AFs) calculated from a series of developed equations established to quantify the deterioration mechanisms affecting PV panels. These equations are derived from several models: the Arrhenius model for temperature and irradiance, the Eyring and Peck models for humidity, and the Coffin-Manson model for cyclic temperature. After formulating equations that measure the combined effects of temperature, irradiance, humidity, and cyclic temperature, these equations were employed to analyze the deterioration of the PV panels installed at the Oued El Keberit solar plant in Souk Ahras, Algeria. The investigation revealed that humidity significantly affected the panels during the winter season. In spring, both humidity and irradiance become important factors. During the summer, temperature greatly influences degradation, while lower humidity levels do not significantly affect the panels. In autumn, humidity continues to be a critical factor. According to the obtained results, the highest AF values occur during the summer months, while the lowest AF values are observed in winter. As a result, the PV panels would deteriorate more noticeably during the winter season than in the summer time.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Reports
Energy Reports Energy-General Energy
CiteScore
8.20
自引率
13.50%
发文量
2608
审稿时长
38 days
期刊介绍: Energy Reports is a new online multidisciplinary open access journal which focuses on publishing new research in the area of Energy with a rapid review and publication time. Energy Reports will be open to direct submissions and also to submissions from other Elsevier Energy journals, whose Editors have determined that Energy Reports would be a better fit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信