Investigation of combustion-induced vibration sources in a diesel engine in the time-frequency domain using the wavelet analysis method and wavelet cross-correlation analysis method
{"title":"Investigation of combustion-induced vibration sources in a diesel engine in the time-frequency domain using the wavelet analysis method and wavelet cross-correlation analysis method","authors":"Natsuki Takahashi, Shun Nakagawa, Masato Mikami","doi":"10.1016/j.meaene.2025.100037","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the characteristics of in-cylinder pressure and vibration acceleration for a single-cylinder diesel engine for different engine speeds using three analysis methods: FFT analysis, wavelet analysis, and wavelet cross-correlation analysis. The cross-correlation coefficients between the in-cylinder pressure and the vibration acceleration of the outer wall near the combustion chamber in the 1/3-octave band were examined to determine whether there was any engine speed dependency and what vibration-transmission characteristics were present. The results from the engine speed dependency suggest that the vibration at 2500 Hz is caused by the piston-connecting rod coupled vibration, which is one of the natural frequencies of the engine, the vibration at 8000 Hz is caused by a combustion chamber resonance, at 6300 Hz a combustion chamber resonance may be linked with a piston natural vibration, and a piston slap may cause the vibration at 5000 Hz. These analysis methods are useful for predicting the source of combustion-induced vibration.</div></div>","PeriodicalId":100897,"journal":{"name":"Measurement: Energy","volume":"5 ","pages":"Article 100037"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement: Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950345025000041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the characteristics of in-cylinder pressure and vibration acceleration for a single-cylinder diesel engine for different engine speeds using three analysis methods: FFT analysis, wavelet analysis, and wavelet cross-correlation analysis. The cross-correlation coefficients between the in-cylinder pressure and the vibration acceleration of the outer wall near the combustion chamber in the 1/3-octave band were examined to determine whether there was any engine speed dependency and what vibration-transmission characteristics were present. The results from the engine speed dependency suggest that the vibration at 2500 Hz is caused by the piston-connecting rod coupled vibration, which is one of the natural frequencies of the engine, the vibration at 8000 Hz is caused by a combustion chamber resonance, at 6300 Hz a combustion chamber resonance may be linked with a piston natural vibration, and a piston slap may cause the vibration at 5000 Hz. These analysis methods are useful for predicting the source of combustion-induced vibration.