Efficient fault detection and categorization in electrical distribution systems using hessian locally linear embedding on measurement data

K. Victor Sam Moses Babu , Sidharthenee Nayak , Divyanshi Dwivedi , Pratyush Chakraborty , Chandrashekhar Narayan Bhende , Pradeep Kumar Yemula , Mayukha Pal
{"title":"Efficient fault detection and categorization in electrical distribution systems using hessian locally linear embedding on measurement data","authors":"K. Victor Sam Moses Babu ,&nbsp;Sidharthenee Nayak ,&nbsp;Divyanshi Dwivedi ,&nbsp;Pratyush Chakraborty ,&nbsp;Chandrashekhar Narayan Bhende ,&nbsp;Pradeep Kumar Yemula ,&nbsp;Mayukha Pal","doi":"10.1016/j.meaene.2025.100035","DOIUrl":null,"url":null,"abstract":"<div><div>Faults on electrical power lines could severely compromise both the reliability and safety of power systems, leading to unstable power delivery and increased outage risks. They pose significant safety hazards, necessitating swift detection and mitigation to maintain electrical infrastructure integrity and ensure continuous power supply. Hence, accurate detection and categorization of electrical faults are pivotal for optimized power system maintenance and operation. In this work, we propose a novel approach for detecting and categorizing electrical faults using the Hessian locally linear embedding (HLLE) technique and subsequent clustering with t-SNE (t-distributed stochastic neighbor embedding) and Gaussian mixture model (GMM). First, we employ HLLE to transform high-dimensional (HD) electrical data into low-dimensional (LD) embedding coordinates. This technique effectively captures the inherent variations and patterns in the data, enabling robust feature extraction. Next, we perform the Mann–Whitney U test based on the feature space of the embedding coordinates for fault detection. This statistical approach allows us to detect electrical faults providing an efficient means of system monitoring and control. Furthermore, to enhance fault categorization, we employ t-SNE with GMM to cluster the detected faults into various categories. To evaluate the performance of the proposed method, we conduct extensive simulations on an electrical system integrated with solar farm. Our results demonstrate that the proposed approach exhibits effective fault detection and clustering across a range of fault types with different variations of the same fault. Overall, this research presents an effective methodology for robust fault detection and categorization in electrical systems, contributing to the advancement of fault management practices and the prevention of system failures.</div></div>","PeriodicalId":100897,"journal":{"name":"Measurement: Energy","volume":"5 ","pages":"Article 100035"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement: Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950345025000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Faults on electrical power lines could severely compromise both the reliability and safety of power systems, leading to unstable power delivery and increased outage risks. They pose significant safety hazards, necessitating swift detection and mitigation to maintain electrical infrastructure integrity and ensure continuous power supply. Hence, accurate detection and categorization of electrical faults are pivotal for optimized power system maintenance and operation. In this work, we propose a novel approach for detecting and categorizing electrical faults using the Hessian locally linear embedding (HLLE) technique and subsequent clustering with t-SNE (t-distributed stochastic neighbor embedding) and Gaussian mixture model (GMM). First, we employ HLLE to transform high-dimensional (HD) electrical data into low-dimensional (LD) embedding coordinates. This technique effectively captures the inherent variations and patterns in the data, enabling robust feature extraction. Next, we perform the Mann–Whitney U test based on the feature space of the embedding coordinates for fault detection. This statistical approach allows us to detect electrical faults providing an efficient means of system monitoring and control. Furthermore, to enhance fault categorization, we employ t-SNE with GMM to cluster the detected faults into various categories. To evaluate the performance of the proposed method, we conduct extensive simulations on an electrical system integrated with solar farm. Our results demonstrate that the proposed approach exhibits effective fault detection and clustering across a range of fault types with different variations of the same fault. Overall, this research presents an effective methodology for robust fault detection and categorization in electrical systems, contributing to the advancement of fault management practices and the prevention of system failures.
基于hessian局部线性嵌入的配电系统故障检测与分类
电力线路故障会严重影响电力系统的可靠性和安全性,导致电力输送不稳定,增加停电风险。它们构成了重大的安全隐患,需要迅速发现和缓解,以保持电力基础设施的完整性并确保持续供电。因此,准确的电气故障检测和分类对于优化电力系统的维护和运行至关重要。在这项工作中,我们提出了一种使用Hessian局部线性嵌入(HLLE)技术以及随后使用t-SNE (t-分布随机邻居嵌入)和高斯混合模型(GMM)进行聚类的新方法来检测和分类电气故障。首先,我们使用HLLE将高维(HD)电数据转换为低维(LD)嵌入坐标。该技术有效地捕获了数据中固有的变化和模式,实现了鲁棒的特征提取。接下来,我们基于嵌入坐标的特征空间进行Mann-Whitney U检验,用于故障检测。这种统计方法使我们能够检测电气故障,提供了一种有效的系统监测和控制手段。此外,为了增强故障分类能力,我们将t-SNE与GMM相结合,将检测到的故障聚类到不同的类别中。为了评估所提出的方法的性能,我们对与太阳能发电场集成的电力系统进行了广泛的模拟。我们的研究结果表明,所提出的方法在同一故障的不同变化的故障类型范围内表现出有效的故障检测和聚类。总的来说,本研究提出了一种有效的方法,用于电力系统的鲁棒故障检测和分类,有助于提高故障管理实践和预防系统故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信