Graphene nanomaterial-based electrochemical biosensors for salivary biomarker detection: A translational approach to oral cancer diagnostics

D. Mahalakshmi , J. Nandhini , G. Meenaloshini , E. Karthikeyan , KK Karthik , J. Sujaritha , Vandhana V , C. Ragavendran
{"title":"Graphene nanomaterial-based electrochemical biosensors for salivary biomarker detection: A translational approach to oral cancer diagnostics","authors":"D. Mahalakshmi ,&nbsp;J. Nandhini ,&nbsp;G. Meenaloshini ,&nbsp;E. Karthikeyan ,&nbsp;KK Karthik ,&nbsp;J. Sujaritha ,&nbsp;Vandhana V ,&nbsp;C. Ragavendran","doi":"10.1016/j.ntm.2025.100073","DOIUrl":null,"url":null,"abstract":"<div><div>Graphene-based electrochemical biosensors have emerged as promising tools for the early detection and monitoring of oral cancer through salivary biomarker analysis. Graphene's exceptional properties, including high surface area, superior electrical conductivity, and excellent mechanical strength, enable the development of highly sensitive and specific biosensors. This review provides a comprehensive overview of the current state-of-the-art in graphene-based electrochemical biosensors for salivary biomarker detection in oral cancer. We discuss the unique advantages of saliva as a diagnostic medium and highlight the key salivary biomarkers associated with oral cancer, including proteins, DNA, and RNA. Various electrochemical detection techniques, such as cyclic voltammetry, differential pulse voltammetry, electrochemical impedance spectroscopy, field-effect transistors, amperometry, chronoamperometry, and photoelectrochemical methods, are explored in the context of graphene-based biosensors. The challenges associated with the development and clinical translation of these biosensors are also addressed, emphasizing the need for improved functionalization strategies, enhanced stability, and standardized validation protocols. Finally, we present a futuristic outlook on the integration of graphene-based biosensors with artificial intelligence, microfluidics, and telemedicine platforms to enable personalized diagnostics and treatment monitoring. With continued advancements in sensor technology and computational tools, graphene-based electrochemical biosensors have the potential to revolutionize oral cancer management, improving patient outcomes and quality of life.</div></div>","PeriodicalId":100941,"journal":{"name":"Nano TransMed","volume":"4 ","pages":"Article 100073"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano TransMed","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2790676025000044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene-based electrochemical biosensors have emerged as promising tools for the early detection and monitoring of oral cancer through salivary biomarker analysis. Graphene's exceptional properties, including high surface area, superior electrical conductivity, and excellent mechanical strength, enable the development of highly sensitive and specific biosensors. This review provides a comprehensive overview of the current state-of-the-art in graphene-based electrochemical biosensors for salivary biomarker detection in oral cancer. We discuss the unique advantages of saliva as a diagnostic medium and highlight the key salivary biomarkers associated with oral cancer, including proteins, DNA, and RNA. Various electrochemical detection techniques, such as cyclic voltammetry, differential pulse voltammetry, electrochemical impedance spectroscopy, field-effect transistors, amperometry, chronoamperometry, and photoelectrochemical methods, are explored in the context of graphene-based biosensors. The challenges associated with the development and clinical translation of these biosensors are also addressed, emphasizing the need for improved functionalization strategies, enhanced stability, and standardized validation protocols. Finally, we present a futuristic outlook on the integration of graphene-based biosensors with artificial intelligence, microfluidics, and telemedicine platforms to enable personalized diagnostics and treatment monitoring. With continued advancements in sensor technology and computational tools, graphene-based electrochemical biosensors have the potential to revolutionize oral cancer management, improving patient outcomes and quality of life.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信