Phosphate removal performance and mechanism of zirconium-doped magnetic gasification slag

IF 5.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Baoguo Yang , Fengcheng Jiang , Yinxin Zhao , Hongbin Li , Shengguang Zhang , Kanghui Liu
{"title":"Phosphate removal performance and mechanism of zirconium-doped magnetic gasification slag","authors":"Baoguo Yang ,&nbsp;Fengcheng Jiang ,&nbsp;Yinxin Zhao ,&nbsp;Hongbin Li ,&nbsp;Shengguang Zhang ,&nbsp;Kanghui Liu","doi":"10.1016/j.arabjc.2024.106079","DOIUrl":null,"url":null,"abstract":"<div><div>Zirconium-modified materials exhibit good adsorption performance, but their large-scale application is limited by the cost of carrier materials and the difficulty of solid–liquid separation of powder adsorbents. Therefore, in this study, we used low-cost gasification slag for zirconium oxide loading to avoid the aforementioned problems and successfully prepared a novel gasification slag–based zirconium-doped magnetic adsorbent material (GS-Z2M). GS-Z2M is a mesoporous adsorbent material with a large specific surface area (188 m<sup>2</sup>/g); it completely adsorbed phosphate with an initial concentration of 10 mg/L within 3 h. The rate-controlling step of phosphate removal using GS-Z2M was chemisorption. The Langmuir model proved more suitable for describing the adsorption of phosphate on GS-Z2M than the Freundlich and Temkin models, and the maximum phosphate adsorption capacity calculated using the Langmuir model was 26.02 mg/g. GS-Z2M showed good phosphate adsorption selectivity and reusability (can be recycled at least 5 times). GS-Z2M also showed good capacity for treating actual phosphate wastewater under dynamic flow conditions. The mechanism of phosphate adsorption on GS-Z2M mainly involved ligand exchange and inner-sphere complexation. The obtained results suggest that GS-Z2M is a promising adsorbent and vital for the development of phosphate adsorbents and recycling of gasification slag.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"18 1","pages":"Article 106079"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878535224004817","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zirconium-modified materials exhibit good adsorption performance, but their large-scale application is limited by the cost of carrier materials and the difficulty of solid–liquid separation of powder adsorbents. Therefore, in this study, we used low-cost gasification slag for zirconium oxide loading to avoid the aforementioned problems and successfully prepared a novel gasification slag–based zirconium-doped magnetic adsorbent material (GS-Z2M). GS-Z2M is a mesoporous adsorbent material with a large specific surface area (188 m2/g); it completely adsorbed phosphate with an initial concentration of 10 mg/L within 3 h. The rate-controlling step of phosphate removal using GS-Z2M was chemisorption. The Langmuir model proved more suitable for describing the adsorption of phosphate on GS-Z2M than the Freundlich and Temkin models, and the maximum phosphate adsorption capacity calculated using the Langmuir model was 26.02 mg/g. GS-Z2M showed good phosphate adsorption selectivity and reusability (can be recycled at least 5 times). GS-Z2M also showed good capacity for treating actual phosphate wastewater under dynamic flow conditions. The mechanism of phosphate adsorption on GS-Z2M mainly involved ligand exchange and inner-sphere complexation. The obtained results suggest that GS-Z2M is a promising adsorbent and vital for the development of phosphate adsorbents and recycling of gasification slag.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arabian Journal of Chemistry
Arabian Journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
10.80
自引率
3.30%
发文量
763
审稿时长
63 days
期刊介绍: The Arabian Journal of Chemistry is an English language, peer-reviewed scholarly publication in the area of chemistry. The Arabian Journal of Chemistry publishes original papers, reviews and short reports on, but not limited to: inorganic, physical, organic, analytical and biochemistry. The Arabian Journal of Chemistry is issued by the Arab Union of Chemists and is published by King Saud University together with the Saudi Chemical Society in collaboration with Elsevier and is edited by an international group of eminent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信