Multi-source meteorological data assessment on daily runoff simulation in the upper reaches of the Hei River, Northwest China

IF 4.7 2区 地球科学 Q1 WATER RESOURCES
Huazhu Xue , Yaheng Wang , Guotao Dong , Chenchen Zhang , Yaokang Lian , Hui Wu
{"title":"Multi-source meteorological data assessment on daily runoff simulation in the upper reaches of the Hei River, Northwest China","authors":"Huazhu Xue ,&nbsp;Yaheng Wang ,&nbsp;Guotao Dong ,&nbsp;Chenchen Zhang ,&nbsp;Yaokang Lian ,&nbsp;Hui Wu","doi":"10.1016/j.ejrh.2024.102100","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>The upper reaches of the Hei River Basin, northwest China</div></div><div><h3>Study focus</h3><div>To improve the accuracy and physical consistency of runoff simulations, as well as to compare the applicability of meteorological data obtained from multiple sources, this study integrates physical mechanisms with deep learning methods to construct a coupled model, HIMS-LSTM. Considering the impact of meteorological data on runoff simulation and prediction, meteorological station observation data, ERA5 data and CFSv2 data were obtained for runoff simulation and prediction. This approach enables the assessment of the applicability of meteorological data obtained from three different sources.</div></div><div><h3>New hydrological insights for the region</h3><div>The HIMS-LSTM model leverages physical mechanisms to compensate for the lack of physical knowledge in data-driven models. Consequently, the accuracy and physical consistency of runoff simulation results are significantly improved compared to the single models HIMS and LSTM. Furthermore, a comparative assessment of simulation results based on multi-source meteorological data demonstrates that daily runoff simulations using meteorological station observation data yield the best results, indicating the highest applicability of this data source. The constructed coupled HIMS-LSTM model provides some insight into the simulation and prediction of daily runoff. Furthermore, this study provides a valuable reference for selecting suitable meteorological data sources for runoff simulation and prediction.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"57 ","pages":"Article 102100"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221458182400449X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Study region

The upper reaches of the Hei River Basin, northwest China

Study focus

To improve the accuracy and physical consistency of runoff simulations, as well as to compare the applicability of meteorological data obtained from multiple sources, this study integrates physical mechanisms with deep learning methods to construct a coupled model, HIMS-LSTM. Considering the impact of meteorological data on runoff simulation and prediction, meteorological station observation data, ERA5 data and CFSv2 data were obtained for runoff simulation and prediction. This approach enables the assessment of the applicability of meteorological data obtained from three different sources.

New hydrological insights for the region

The HIMS-LSTM model leverages physical mechanisms to compensate for the lack of physical knowledge in data-driven models. Consequently, the accuracy and physical consistency of runoff simulation results are significantly improved compared to the single models HIMS and LSTM. Furthermore, a comparative assessment of simulation results based on multi-source meteorological data demonstrates that daily runoff simulations using meteorological station observation data yield the best results, indicating the highest applicability of this data source. The constructed coupled HIMS-LSTM model provides some insight into the simulation and prediction of daily runoff. Furthermore, this study provides a valuable reference for selecting suitable meteorological data sources for runoff simulation and prediction.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology-Regional Studies
Journal of Hydrology-Regional Studies Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.70
自引率
8.50%
发文量
284
审稿时长
60 days
期刊介绍: Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信